Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T08:09:23.990Z Has data issue: false hasContentIssue false

Adversity in preschool-aged children: Effects on salivary interleukin-1β

Published online by Cambridge University Press:  06 May 2015

Audrey R. Tyrka*
Affiliation:
Butler Hospital Brown University Alpert Medical School
Stephanie H. Parade
Affiliation:
Brown University Alpert Medical School E. P. Bradley Hospital
Thomas R. Valentine
Affiliation:
Butler Hospital
Nicole M. Eslinger
Affiliation:
Butler Hospital
Ronald Seifer
Affiliation:
Brown University Alpert Medical School E. P. Bradley Hospital
*
Address correspondence and reprint requests to: Audrey R. Tyrka, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906; E-mail Audrey_Tyrka@brown.edu.

Abstract

Exposure to early life adversity is linked to impaired affective, cognitive, and behavioral functioning and increases risk for various psychiatric and medical conditions. Stress-induced increases in pro-inflammatory cytokines may be a biological mechanism of these effects. Few studies have examined cytokine levels in children experiencing early life adversity, and very little research has investigated cytokines or other markers of inflammation in saliva. In the present study, we examined salivary interleukin (IL)-1β and C-reactive protein (CRP) levels in relation to stress exposure in 40 children aged 3 to 5 years who were enrolled in a larger study of early life adversity. Childhood maltreatment status was assessed via review of child welfare records. Contextual stress exposure, traumatic life event history, and symptoms of psychopathology were assessed via caregiver interviews at a home visit. In a subsequent visit, salivary IL-1β and CRP were obtained before and after participation in four emotion-eliciting tasks. The number of past-month contextual stressors, lifetime contextual stressors, and traumatic life events each demonstrated a significant main effect on IL-1β. Baseline IL-1β was positively associated with each of the significant main-effect adversities. Postchallenge IL-1β displayed positive associations with each adversity variable, but these were not significant. CRP was not significantly associated with any of the adversity variables. Given the evidence suggesting the involvement of IL-1β in the neuropathology of psychiatric conditions, these results may have important implications for developmental outcomes.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidin, R. R. (1995). Parenting Stress Index: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
American Dental Association Division of Communications, Journal of the American Dental Association, & ADA Council on Scientific Affairs. (2005). Tooth eruption: The primary teeth. Journal of the American Dental Association, 136, 1619.CrossRefGoogle Scholar
American Dental Association Division of Communications, Journal of the American Dental Association, & ADA Council on Scientific Affairs. (2006). Tooth eruption: The permanent teeth. Journal of the American Dental Association, 137, 127.CrossRefGoogle Scholar
Appleton, A. A., Buka, S. L., McCormick, M. C., Koenen, K. C., Loucks, E. B., & Kubzansky, L. D. (2012). The association between childhood emotional functioning and adulthood inflammation is modified by early-life socioeconomic status. Health Psychology, 31, 413422.CrossRefGoogle ScholarPubMed
Appleyard, K., Egeland, B., van Dulmen, M. H., & Sroufe, L. A. (2005). When more is not better: The role of cumulative risk in child behavior outcomes. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46, 235245.CrossRefGoogle Scholar
Araujo, D. M., & Cotman, C. W. (1995). Differential effects of interleukin-1 beta and interleukin-2 on glia and hippocampal neurons in culture. International Journal of Developmental Neuroscience, 13, 201212.CrossRefGoogle ScholarPubMed
Bailey, M. T., Kinsey, S. G., Padgett, D. A., Sheridan, J. F., & Leblebicioglu, B. (2009). Social stress enhances IL-1beta and TNF-alpha production by Porphyromonas gingivalis lipopolysaccharide-stimulated CD11b+ cells. Physiology & Behavior, 98, 351358.CrossRefGoogle ScholarPubMed
Baker, D. G., Nievergelt, C. M., & O'Connor, D. T. (2012). Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology, 62, 663673.CrossRefGoogle ScholarPubMed
Barkho, B. Z., Song, H., Aimone, J. B., Smrt, R. D., Kuwabara, T., Nakashima, K., et al. (2006). Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells and Development, 15, 407421.CrossRefGoogle ScholarPubMed
Barnett, D., Manly, J. T., & Cicchetti, D. (1993). Defining child maltreatment: The interface between policy and research. In Cicchetti, D. & Toth, S. L. (Eds.), Child abuse, child development and social policy (pp. 773). Norwood, NJ: Ablex.Google Scholar
Bernardino, L., Agasse, F., Silva, B., Ferreira, R., Grade, S., & Malva, J. O. (2008). Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells, 26, 23612371.CrossRefGoogle ScholarPubMed
Bertone-Johnson, E. R., Whitcomb, B. W., Missmer, S. A., Karlson, E. W., & Rich-Edwards, J. W. (2012). Inflammation and early-life abuse in women. American Journal of Preventive Medicine, 43, 611620.CrossRefGoogle ScholarPubMed
Bhasin, M. K., Dusek, J. A., Chang, B. H., Joseph, M. G., Denninger, J. W., Fricchione, G. L., et al. (2013) Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLOS ONE, 8, 113.CrossRefGoogle ScholarPubMed
Brody, G. H., Yu, T., Chen, Y. F., Kogan, S. M., Evans, G. W., Windle, M., et al. (2013). Supportive family environments, genes that confer sensitivity, and allostatic load among rural African American emerging adults: A prospective analysis. Journal of Family Psychology, 27, 2229.CrossRefGoogle ScholarPubMed
Bronfenbrenner, U. (1977). Doing your own thing—Our undoing. Child Psychiatry and Human Development, 8, 310.CrossRefGoogle ScholarPubMed
Brown, D. W., Anda, R. F., Tiemeier, H., Felitti, V. J., Edwards, V. J., Croft, J. B., et al. (2009). Adverse childhood experiences and the risk of premature mortality. American Journal of Preventive Medicine, 37, 389396.CrossRefGoogle ScholarPubMed
Brown, G. R., & Anderson, B. (1991). Psychiatric morbidity in adult inpatients with childhood histories of sexual and physical abuse. American Journal of Psychiatry, 148, 5561.Google ScholarPubMed
Broyles, S. T., Staiano, A. E., Drazba, K. T., Gupta, A. K., Sothern, M., & Katzmarzyk, P. T. (2012). Elevated C-reactive protein in children from risky neighborhoods: Evidence for a stress pathway linking neighborhoods and inflammation in children. PLOS ONE, 7, e45419.CrossRefGoogle ScholarPubMed
Brydon, L., Edwards, S., Jia, H., Mohamed-Ali, V., Zachary, I., Martin, J. F., et al. (2005). Psychological stress activates interleukin-1beta gene expression in human mononuclear cells. Brain, Behavior, and Immunity, 19, 540546.CrossRefGoogle ScholarPubMed
Bryer, J. B., Nelson, B. A., Miller, J. B., & Krol, P. A. (1987). Childhood sexual and physical abuse as factors in adult psychiatric illness. American Journal of Psychiatry, 144, 14261430.Google ScholarPubMed
Burns, B. J., Phillips, S. D., Wagner, H. R., Barth, R. P., Kolko, D. J., Campbell, Y., et al. (2004). Mental health need and access to mental health services by youths involved with child welfare: A national survey. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 960970.CrossRefGoogle ScholarPubMed
Byrne, M. L., O'Brien-Simpson, N. M., Reynolds, E. C., Walsh, K. A., Laughton, K., Waloszek, J. M., et al. (2013). Acute phase protein and cytokine levels in serum and saliva: A comparison of detectable levels and correlations in a depressed and healthy adolescent sample. Brain, Behavior, and Immunity, 34, 164175.CrossRefGoogle Scholar
Cacci, E., Claasen, J. H., & Kokaia, Z. (2005). Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. Journal of Neuroscience Research, 80, 789797.CrossRefGoogle ScholarPubMed
Carpenter, L. L., Gawuga, C. E., Tyrka, A. R., Lee, J. K., Anderson, G. M., & Price, L. H. (2010). Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology, 35, 26172623.CrossRefGoogle ScholarPubMed
Carpenter, L. L., Gawuga, C. E., Tyrka, A. R., & Price, L. H. (2012). C-reactive protein, early life stress, and well-being in healthy adults. Acta Psychiatrica Scandinavica, 126, 402410.CrossRefGoogle ScholarPubMed
Caso, J. R., Moro, M. A., Lorenzo, P., Lizasoain, I., & Leza, J. C. (2007). Involvement of IL-1beta in acute stress-induced worsening of cerebral ischaemia in rats. European Neuropsychopharmacology, 17, 600607.CrossRefGoogle ScholarPubMed
Chen, E., Miller, G. E., Kobor, M. S., & Cole, S. W. (2011). Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Molecular Psychiatry, 16, 729737.CrossRefGoogle ScholarPubMed
Cicchetti, D. (2013). Annual Research Review: Resilient functioning in maltreated children—Past, present, and future perspectives. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54, 402422.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Lynch, M. (1993). Toward an ecological/transactional model of community violence and child maltreatment: Consequences for children's development. Psychiatry, 56, 96118.CrossRefGoogle ScholarPubMed
Coelho, R., Viola, T. W., Walss-Bass, C., Brietzke, E., & Grassi-Oliveira, R. (2013). Childhood maltreatment and inflammatory markers: A systematic review. Acta Psychiatrica Scandinavica. Advance online publication.Google Scholar
Cook, D. G., Mendall, M. A., Whincup, P. H., Carey, I. M., Ballam, L., Morris, J. E., et al. (2000). C-reactive protein concentration in children: Relationship to adiposity and other cardiovascular risk factors. Atherosclerosis, 149, 139150.CrossRefGoogle ScholarPubMed
Danese, A., Caspi, A., Williams, B., Ambler, A., Sugden, K., Mika, J., et al. (2011). Biological embedding of stress through inflammation processes in childhood. Molecular Psychiatry, 16, 244246.CrossRefGoogle ScholarPubMed
Danese, A., Moffitt, T. E., Pariante, C. M., Ambler, A., Poulton, R., & Caspi, A. (2008). Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Archives of General Psychiatry, 65, 409415.CrossRefGoogle ScholarPubMed
Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proceedings of the National Academy of Sciences, 104, 13191324.CrossRefGoogle Scholar
Dantzer, R. (2009). Cytokine, sickness behavior, and depression. Immunology and Allergy Clinics of North America, 29, 247264.CrossRefGoogle ScholarPubMed
Dixon, D., Meng, H., Goldberg, R., Schneiderman, N., & Delamater, A. (2009). Stress and body mass index each contributes independently to tumor necrosis factor-alpha production in prepubescent Latino children. Journal of Pediatric Nursing, 24, 378388.CrossRefGoogle ScholarPubMed
Dowd, J. B., Zajacova, A., & Aiello, A. E. (2010). Predictors of inflammation in U.S. children aged 3–16 years. American Journal of Preventive Medicine, 39, 314320.CrossRefGoogle Scholar
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., et al. (2010). A meta-analysis of cytokines in major depression. Biological Psychiatry, 67, 446457.CrossRefGoogle ScholarPubMed
Gaskin, D. J., Thorpe, R. J. Jr., McGinty, E. E., Bower, K., Rohde, C., Young, J. H., et al. (2013). Disparities in diabetes: The nexus of race, poverty, and place. American Journal of Public Health. Advance online publication.Google Scholar
Gimeno, D., Ferrie, J. E., Elovainio, M., Pulkki-Raback, L., Keltikangas-Jarvinen, L., Eklund, C., et al. (2008). When do social inequalities in C-reactive protein start? A life course perspective from conception to adulthood in the Cardiovascular Risk in Young Finns Study. International Journal of Epidemiology, 37, 290298.CrossRefGoogle Scholar
Gola, H., Engler, H., Sommershof, A., Adenauer, H., Kolassa, S., Schedlowski, M., et al. (2013). Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells. BMC Psychiatry, 13, 40.CrossRefGoogle ScholarPubMed
Hartwell, K. J., Moran-Santa Maria, M. M., Twal, W. O., Shaftman, S., DeSantis, S. M., McRae-Clark, A. L., et al. (2013). Association of elevated cytokines with childhood adversity in a sample of healthy adults. Journal of Psychiatric Research, 47, 604610.CrossRefGoogle Scholar
Herberth, G., Weber, A., Roder, S., Elvers, H. D., Kramer, U., Schins, R. P., et al. (2008). Relation between stressful life events, neuropeptides and cytokines: Results from the LISA birth cohort study. Pediatric Allergy and Immunology, 19, 722729.CrossRefGoogle ScholarPubMed
Hiles, S. A., Baker, A. L., de Malmanche, T., & Attia, J. (2012). A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: Exploring the causes of heterogeneity. Brain, Behavior, and Immunity, 26, 11801188.CrossRefGoogle ScholarPubMed
Howe, L. D., Galobardes, B., Sattar, N., Hingorani, A. D., Deanfield, J., Ness, A. R., et al. (2010). Are there socioeconomic inequalities in cardiovascular risk factors in childhood, and are they mediated by adiposity? Findings from a prospective cohort study. International Journal of Obesity (London), 34, 11491159.CrossRefGoogle ScholarPubMed
Kohman, R. A., & Rhodes, J. S. (2013). Neurogenesis, inflammation and behavior. Brain, Behavior, and Immunity, 27, 2232.CrossRefGoogle ScholarPubMed
Koinis-Mitchell, D., McQuaid, E. L., Seifer, R., Kopel, S. J., Esteban, C., Canino, G., et al. (2007). Multiple urban and asthma-related risks and their association with asthma morbidity in children. Journal of Pediatric Psychology, 32, 582595.CrossRefGoogle Scholar
Koo, J. W., & Duman, R. S. (2008). IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proceedings of the National Academy of Sciences, 105, 751756.CrossRefGoogle ScholarPubMed
Krishnadas, R., McLean, J., Batty, G. D., Burns, H., Deans, K. A., Ford, I., et al. (2013). Socioeconomic deprivation and cortical morphology: Psychological, social, and biological determinants of ill health study. Psychosomatic Medicine, 75, 616623.CrossRefGoogle ScholarPubMed
Lacy, P., & Stow, J. L. (2011). Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways. Blood, 118, 918.CrossRefGoogle ScholarPubMed
Liu, Y., Ho, R. C., & Mak, A. (2012). Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. Journal of Affective Disorders, 139, 230239.CrossRefGoogle ScholarPubMed
Ludwig, J., Sanbonmatsu, L., Gennetian, L., Adam, E., Duncan, G. J., Katz, L. F., et al. (2011). Neighborhoods, obesity, and diabetes—A randomized social experiment. New England Journal of Medicine, 365, 15091519.CrossRefGoogle ScholarPubMed
Marin, T. J., Martin, T. M., Blackwell, E., Stetler, C., & Miller, G. E. (2007). Differentiating the impact of episodic and chronic stressors on hypothalamic–pituitary–adrenocortical axis regulation in young women. Health Psychology, 26, 447455.CrossRefGoogle ScholarPubMed
Mastrolonardo, M., Alicino, D., Zefferino, R., Pasquini, P., & Picardi, A. (2007). Effect of psychological stress on salivary interleukin-1beta in psoriasis. Archives of Medical Research, 38, 206211.CrossRefGoogle ScholarPubMed
Matthews, K. A., Chang, Y. F., Thurston, R. C., & Bromberger, J. T. (2013). Child abuse is related to inflammation in mid-life women: Role of obesity. Brain, Behavior, and Immunity. Advance online publication.Google Scholar
McDade, T. W., Leonard, W. R., Burhop, J., Reyes-Garcia, V., Vadez, V., Huanca, T., et al. (2005). Predictors of C-reactive protein in Tsimane' 2- to 15-year-olds in lowland Bolivia. American Journal of Physical Anthropology, 128, 906913.CrossRefGoogle Scholar
Megson, E., Fitzsimmons, T., Dharmapatni, K., & Bartold, P. M. (2010). C-reactive protein in gingival crevicular fluid may be indicative of systemic inflammation. Journal of Clinical Periodontology, 37, 797804.CrossRefGoogle ScholarPubMed
Miller, G. E., & Chen, E. (2010). Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science, 21, 848856.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., et al. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of the National Academy of Sciences, 106, 1471614721.CrossRefGoogle Scholar
Miller, G. E., & Cole, S. W. (2012). Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biological Psychiatry, 72, 3440.CrossRefGoogle ScholarPubMed
Mills, N. T., Scott, J. G., Wray, N. R., Cohen-Woods, S., & Baune, B. T. (2013). Research review: The role of cytokines in depression in adolescents: A systematic review. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54, 816835.CrossRefGoogle ScholarPubMed
Monje, M. L., Toda, H., & Palmer, T. D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science, 302, 17601765.CrossRefGoogle ScholarPubMed
Murasko, J. E. (2008). Male–female differences in the association between socioeconomic status and atherosclerotic risk in adolescents. Social Science and Medicine, 67, 18891897.CrossRefGoogle ScholarPubMed
Nguyen, K. T., Deak, T., Owens, S. M., Kohno, T., Fleshner, M., Watkins, L. R., et al. (1998). Exposure to acute stress induces brain interleukin-1beta protein in the rat. Journal of Neuroscience, 18, 22392246.CrossRefGoogle ScholarPubMed
Nikas, J. B. (2013). Inflammation and immune system activation in aging: A mathematical approach. Scientific Reports, 3, 3254.CrossRefGoogle ScholarPubMed
O'Donovan, A., Sun, B., Cole, S., Rempel, H., Lenoci, M., Pulliam, L., et al. (2011). Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Disease Markers, 30, 123132.CrossRefGoogle ScholarPubMed
Ouellet-Morin, I., Danese, A., Williams, B., & Arseneault, L. (2011). Validation of a high-sensitivity assay for C-reactive protein in human saliva. Brain, Behavior, and Immunity, 25, 640646.CrossRefGoogle ScholarPubMed
Out, D., Hall, R. J., Granger, D. A., Page, G. G., & Woods, S. J. (2012). Assessing salivary C-reactive protein: Longitudinal associations with systemic inflammation and cardiovascular disease risk in women exposed to intimate partner violence. Brain, Behavior, and Immunity, 26, 543551.CrossRefGoogle ScholarPubMed
Pace, T. W., Wingenfeld, K., Schmidt, I., Meinlschmidt, G., Hellhammer, D. H., & Heim, C. M. (2012). Increased peripheral NF-kappaB pathway activity in women with childhood abuse-related posttraumatic stress disorder. Brain, Behavior, and Immunity, 26, 1317.CrossRefGoogle ScholarPubMed
Pandey, G. N., Rizavi, H. S., Ren, X., Fareed, J., Hoppensteadt, D. A., Roberts, R. C., et al. (2012). Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. Journal of Psychiatric Research, 46, 5763.CrossRefGoogle ScholarPubMed
Phillips, A. C., Batty, G. D., van Zanten, J. J., Mortensen, L. H., Deary, I. J., Calvin, C. M., et al. (2011). Cognitive ability in early adulthood is associated with systemic inflammation in middle age: The Vietnam experience study. Brain, Behavior, and Immunity, 25, 298301.CrossRefGoogle ScholarPubMed
Pollitt, R. A., Kaufman, J. S., Rose, K. M., Diez-Roux, A. V., Zeng, D., & Heiss, G. (2007). Early-life and adult socioeconomic status and inflammatory risk markers in adulthood. European Journal of Epidemiology, 22, 5566.CrossRefGoogle ScholarPubMed
Porterfield, V. M., Gabella, K. M., Simmons, M. A., & Johnson, J. D. (2012). Repeated stressor exposure regionally enhances beta-adrenergic receptor-mediated brain IL-1beta production. Brain, Behavior, and Immunity, 26, 12491255.CrossRefGoogle ScholarPubMed
Price, L. H., Kao, H. T., Burgers, D. E., Carpenter, L. L., & Tyrka, A. R. (2013). Telomeres and early-life stress: An overview. Biological Psychiatry, 73, 1523.CrossRefGoogle ScholarPubMed
Riis, J. L., Out, D., Dorn, L. D., Beal, S. J., Denson, L. A., Pabst, S., et al. (2013). Salivary cytokines in healthy adolescent girls: Intercorrelations, stability, and associations with serum cytokines, age, and pubertal stage. Developmental Psychobiology. Advance online publication.Google Scholar
Robles, T. F., Glaser, R., & Kiecolt-Glaser, J. K. (2005). Out of balance: A new look at chronic stress, depression, and immunity. Current Directions in Psychological Science, 14, 111115.CrossRefGoogle Scholar
Rooks, C., Veledar, E., Goldberg, J., Bremner, J. D., & Vaccarino, V. (2012). Early trauma and inflammation: Role of familial factors in a study of twins. Psychosomatic Medicine, 74, 146152.CrossRefGoogle Scholar
Rosenkranz, M. A., Davidson, R. J., Maccoon, D. G., Sheridan, J. F., Kalin, N. H., & Lutz, A. (2013). A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain, Behavior, and Immunity, 27, 174184.CrossRefGoogle Scholar
Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 8097.CrossRefGoogle ScholarPubMed
Scheeringa, M. S., & Haslett, N. (2010). The reliability and criterion validity of the Diagnostic Infant and Preschool Assessment: A new diagnostic instrument for young children. Child Psychiatry and Human Development, 41, 299312.CrossRefGoogle ScholarPubMed
Shonkoff, J. P., & Garner, A. S. (2012). Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood, Adoption, and Dependent Care, & Section on Developmental and Behavioral Pediatrics: The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232e246.CrossRefGoogle ScholarPubMed
Slopen, N., Kubzansky, L. D., & Koenen, K. C. (2013). Internalizing and externalizing behaviors predict elevated inflammatory markers in childhood. Psychoneuroendocrinology, 38, 28542862.CrossRefGoogle ScholarPubMed
Slopen, N., Kubzansky, L. D., McLaughlin, K. A., & Koenen, K. C. (2013). Childhood adversity and inflammatory processes in youth: A prospective study. Psychoneuroendocrinology, 38, 188200.CrossRefGoogle ScholarPubMed
Steptoe, A., Hamer, M., & Chida, Y. (2007). The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain, Behavior, and Immunity, 21, 901912.CrossRefGoogle ScholarPubMed
Teunissen, C. E., van Boxtel, M. P., Bosma, H., Bosmans, E., Delanghe, J., De Bruijn, C., et al. (2003). Inflammation markers in relation to cognition in a healthy aging population. Journal of Neuroimmunology, 134, 142150.CrossRefGoogle Scholar
Thomas, N. E., Cooper, S. M., Williams, S. R., Baker, J. S., & Davies, B. (2005). Fibrinogen, homocyst(e)ine, and C-reactive protein concentrations relative to sex and socioeconomic status in British young people. American Journal of Human Biology, 17, 809813.CrossRefGoogle ScholarPubMed
Tyrka, A. R., Burgers, D. E., Philip, N. S., Price, L. H., & Carpenter, L. L. (2013). The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatrica Scandinavica, 128, 434437.CrossRefGoogle ScholarPubMed
Udina, M., Castellvi, P., Moreno-Espana, J., Navines, R., Valdes, M., Forns, X., et al. (2012). Interferon-induced depression in chronic hepatitis C: A systematic review and meta-analysis. Journal of Clinical Psychiatry, 73, 11281138.CrossRefGoogle ScholarPubMed
Valkanova, V., Ebmeier, K. P., & Allan, C. L. (2013). CRP, IL-6 and depression: A systematic review and meta-analysis of longitudinal studies. Journal of Affective Disorders, 150, 736744.CrossRefGoogle ScholarPubMed
Williamson, S., Munro, C., Pickler, R., Grap, M. J., & Elswick, R. K. Jr. (2012). Comparison of biomarkers in blood and saliva in healthy adults. Nursing Research and Practice, 2012, 246178.CrossRefGoogle ScholarPubMed
Wright, C. B., Sacco, R. L., Rundek, T., Delman, J., Rabbani, L., & Elkind, M. (2006). Interleukin-6 is associated with cognitive function: The Northern Manhattan Study. Journal of Stroke and Cerebrovascular Diseases, 15, 3438.CrossRefGoogle ScholarPubMed
Yaffe, K., Lindquist, K., Penninx, B. W., Simonsick, E. M., Pahor, M., Kritchevsky, S., et al. (2003). Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology, 61, 7680.CrossRefGoogle ScholarPubMed
Yamakawa, K., Matsunaga, M., Isowa, T., Kimura, K., Kasugai, K., Yoneda, M., et al. (2009). Transient responses of inflammatory cytokines in acute stress. Biological Psychology, 82, 2532.CrossRefGoogle ScholarPubMed
You, Z., Luo, C., Zhang, W., Chen, Y., He, J., Zhao, Q., et al. (2011). Pro- and anti-inflammatory cytokines expression in rat's brain and spleen exposed to chronic mild stress: Involvement in depression. Behavioural Brain Research, 225, 135141.CrossRefGoogle ScholarPubMed
Zunszain, P. A., Anacker, C., Cattaneo, A., Choudhury, S., Musaelyan, K., Myint, A. M., et al. (2012). Interleukin-1beta: A new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology, 37, 939949.CrossRefGoogle ScholarPubMed