Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T05:27:59.130Z Has data issue: false hasContentIssue false

Are flatter diurnal cortisol rhythms associated with major depression and anxiety disorders in late adolescence? The role of life stress and daily negative emotion

Published online by Cambridge University Press:  23 July 2013

Leah D. Doane*
Affiliation:
Arizona State University
Susan Mineka
Affiliation:
Northwestern University
Richard E. Zinbarg
Affiliation:
Northwestern University
Michelle Craske
Affiliation:
University of California at Los Angeles
James W. Griffith
Affiliation:
Northwestern University
Emma K. Adam
Affiliation:
Northwestern University
*
Address correspondence and reprint requests to: Leah D. Doane, Department of Psychology, P.O. Box 871104, Arizona State University, Tempe, AZ 85287-1104; E-mail: Leah.Doane@asu.edu.

Abstract

Alterations in hypothalamic–pituitary–adrenal (HPA) axis functioning have been associated with major depression disorder (MDD) and some anxiety disorders. Few researchers have tested the possibility that high levels of recent life stress or elevations in negative emotion may partially account for the HPA axis alterations observed in these disorders. In a sample of 300 adolescents from the Youth Emotion Project, we examined associations between MDD and anxiety disorders, dimensional measures of internalizing symptomatology, life stress, mood on the days of cortisol testing, and HPA axis functioning. Adolescents with a past MDD episode and those with a recent MDD episode comorbid with an anxiety disorder had flatter diurnal cortisol slopes than adolescents without a history of internalizing disorders. Higher reports of general distress, a dimension of internalizing symptomatology, were also associated with flatter slopes. Negative emotion, specifically sadness and loneliness, was associated with flatter slopes and partially accounted for the associations between comorbid MDD and anxiety disorders and cortisol. The associations between past MDD and cortisol slopes were not accounted for by negative emotion, dimensional variation in internalizing symptomatology, or levels of life stress, indicating that flatter cortisol slopes may also be a “scar” marker of past experiences of MDD.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K. (2006). Transactions among trait and state emotion and adolescent diurnal and momentary cortisol activity in naturalistic settings. Psychoneuroendocrinology, 31, 664679.CrossRefGoogle ScholarPubMed
Adam, E. K., & Gunnar, M. R. (2001). Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women. Psychoneuroendocrinology, 26, 189208.Google Scholar
Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006). Day-to-day dynamics of experience-cortisol associations in a population-based sample of older adults. Periodicals of the National Academy of Sciences, 103, 1705817063.CrossRefGoogle Scholar
Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34, 14231436.Google Scholar
Barlow, D. H. (2002). Anxiety and its disorders: The nature and treatment of anxiety and panic (2nd ed.). New York: Guilford Press.Google Scholar
Bhagwagar, Z., & Cowen, P. J. (2008). “It's not over when it's over”: Persistent neurobiological abnormalities in recovered depressed patients. Psychological Medicine, 38, 307313.CrossRefGoogle ScholarPubMed
Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.Google Scholar
Carrion, V. G., Weems, C. F., Ray, R. D., Glaser, B., Hessl, D., & Reiss, A. L. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Biological Psychology, 51, 575582.Google ScholarPubMed
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319333.Google Scholar
Clark, L. A., & Watson, D. (1991). Theoretical and empirical issues in differentiating depression from anxiety. In Becker, J. & Kleinman, A. (Eds.), Psychosocial aspects of depression (pp. 3965). New York: Erlbaum.Google Scholar
Clark, L. A., Watson, D., & Mineka, S. (1994). Temperament, personality, and the mood and anxiety disorders. Journal of Abnormal Psychology, 103, 103116.CrossRefGoogle ScholarPubMed
Clements, A. D., & Parker, C. R. (1998). The relationship between salivary cortisol concentrations in frozen versus mailed samples. Psychoneuroendocrinology, 26, 613616.CrossRefGoogle Scholar
Cohen, S., Schwartz, J. E., Epel, E., Kirschbaum, C., Sidney, S., & Seeman, T. (2006). Socioeconomic status, race, and diurnal cortisol decline in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Psychosomatic Medicine, 68, 4150.CrossRefGoogle ScholarPubMed
Colomina, M. T., Canals, J., Carbajo, G., & Domingo, J. L. (1997). Salivary cortisol in a young population: Relationship with psychopathological disorders. Research Communications in Biological Psychology and Psychiatry, 22, 110.Google Scholar
Costello, E., Mustillo, S., Erkanli, A., Keeler, G., & Angold, A. (2003). Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60, 837844.Google Scholar
Cowen, P. J. (2010). Not fade away: The HPA axis and depression. Psychological Medicine, 40, 14.Google Scholar
De Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology part I: Biological stress systems. Biological Psychiatry, 45, 12591270.Google Scholar
DeSantis, A., Adam, E. K., Doane, L. D., Mineka, S., Zinbarg, R., & Craske, M. (2007). Racial and ethnic difference in cortisol diurnal rhythms in a community sample of adolescents. Journal of Adolescent Health, 41, 313.Google Scholar
Doane, L. D., & Adam, E. K. (2010). Loneliness and cortisol: Momentary, day-to-day, and trait associations. Psychoneuroendocrinology, 35, 430441.CrossRefGoogle ScholarPubMed
Dressendorfer, R. A., Kirschbaum, C., Rohde, W., Stahl, F., & Strasburger, C. J. (1992). Synthesis of a cortisol–biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. Journal of Steroid Biochemistry and Molecular Biology, 43, 683692.Google Scholar
Ehlert, U., Gaab, J., & Heinrichs, M. (2001). Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: The role of the hypothalamus–pituitary–adrenal axis. Biological Psychology, 57, 141152.Google Scholar
Eysenck, H. J., & Eysenck, S. B. J. (1975). Manual of the Eysenck Personality Questionnaire (adult and junior). London: Hodder & Stoughton.Google Scholar
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, research version, non-patient edition (SCID-I/NP). New York: New York State Psychiatric Institute, Biometrics Research.Google Scholar
Gerritsen, L., Geerlings, M. I., Beekman, A. T. F., Deeg, D. J. H., Penninx, B. W. J. H., & Comijs, H. C. (2010). Early and late life events and salivary cortisol in older persons. Psychological Medicine, 40, 15691578.CrossRefGoogle ScholarPubMed
Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. Psychological Assessment, 4, 2642.Google Scholar
Goodyer, I. M., Bacon, A., Ban, M., Croudace, T., & Herbert, J. (2009). Serotonin transporter genotype, morning cortisol and subsequent depression in adolescents. British Journal of Psychiatry, 195, 3945.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in HPA activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985.Google Scholar
Hammen, C. (1991). Generation of stress in the course of unipolar depression. Journal of Abnormal Psychology, 100, 555561.Google Scholar
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319.Google Scholar
Hammen, C. L., Gordon, D., Burge, D., & Adrian, C. (1987). Maternal affective disorders, illness, and stress: Risk for children's psychopathology. American Journal of Psychiatry, 144, 736741.Google Scholar
Henker, B., Whalen, C. K., Jamner, L. D., & Delfino, R. J. (2002). Anxiety, affect, and activity in teenagers: Monitoring daily life with electronic diaries. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 660670.Google Scholar
Hennings, J. M., Owashi, T., Binder, E. B., Horstmann, S., Menke, A., Kloiber, S., et al. (2008). Clinical characteristics, treatment outcomes in a representative sample of depressed inpatients—Findings from the Munich Antidepressant Response Signature (MARS) project. International Journal of Neuropsychopharmacology, 18, 917924.Google Scholar
Jacobs, N., Myin-Germeys, I., Derom, C., Delespaul, P., van Os, J., & Nicolson, N. A. (2007). A momentary assessment study of the relationship between affective and adrenocortical stress responses in daily life. Biological Psychology, 74, 6066.Google Scholar
Kirschbaum, C., & Hellhammer, D. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22, 150169.Google Scholar
Kumari, M., Shipley, M., Stafford, M., & Kivimaki, M. (2011). Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: Findings from the Whitehall II Study. Journal of Clinical Endocrinology and Metabolism, 96, 14781485.Google Scholar
Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic–pituitary–adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology, 34, 12721283.Google Scholar
Matias, G. P., Nicolson, N. A., & Friere, T. (2011). Solitude and cortisol: Associations with state and trait affect in daily life. Biological Psychology, 86, 314319.Google Scholar
McKay, M. S., & Zakzanis, K. K. (2010). The impact of treatment on HPA axis activity in unipolar major depression. Journal of Psychiatric Research, 44, 183192.Google Scholar
Miller, G. E., Chen, E., & Zhou, E. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin, 133, 2545.Google Scholar
Mineka, S., & Zinbarg, R. E. (1996). Conditioning and ethological models of anxiety disorders: Stress-in-dynamic-context anxiety models. In Hope, D. A. (Ed.), Nebraska Symposium on Motivation: Vol. 43. Perspectives on anxiety, panic, and fear: Current theory and research in motivation (pp. 135210). Lincoln: University of Nebraska Press.Google Scholar
Mineka, S., & Zinbarg, R. E. (2006). A contemporary learning theory perspective on the etiology of anxiety disorders: It's not what you thought it was. American Psychologist, 61, 1026.CrossRefGoogle Scholar
Monroe, S. M., Slavich, G. M., & Georgiades, K. (2009). The social environment and life stress in depression. In Gotlib, I. H. & Hammen, C. L. (Eds.), Handbook of depression (2nd ed., pp. 340360). New York: Guilford Press.Google Scholar
Nicolson, N. A. (2008). Measurement of cortisol. In Luecken, L. J. & Gallo, L. C. (Eds.), Handbook of physiological research methods in health psychology (pp. 3774). New York: Sage.Google Scholar
Oskis, A., Loveday, C., Hucklebridge, F., Thorn, L., & Clow, A. (2009). Diurnal patterns of salivary cortisol across the adolescent period in health females. Psychoneuroendocrinology, 34, 307316.Google Scholar
Parker, K. J., Schatzberg, A. F., & Lyons, D. M. (2003). Neuroendocrine aspects of hypercortisolism in major depression. Hormones and Behavior, 43, 6066.Google Scholar
Patil, V. H., Singh, S. N., Mishra, S., & Donavan, D. T. (2007). Parallel analysis engine to aid determining number of factors to retain [Computer software]. Retrieved from http://ires.ku.edu/~smishra/parallelengine.htmGoogle Scholar
Peeters, F., Nicolson, N. A., Berkhof, J., Delespaul, P., & deVries, M. (2003). Effects of daily events on mood states in major depressive disorder. Journal of Abnormal Psychology, 112, 203211.Google Scholar
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., et al. (1997). Free cortisol levels after awakening: A reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61, 25392549.Google Scholar
Ruttle, P. L., Shirtcliff, E. A., Serbin, L. A., Fisher, D. B., Stack, D. M., & Schwartzman, A. E. (2011). Disentangling psychobiological mechanisms underlying internalizing and externalizing behaviors in youth: Longitudinal and concurrent associations with cortisol. Hormones and Behavior, 59, 123132.Google Scholar
Saucier, G. (1994). Mini-Markers: A brief version of Goldberg's unipolar Big-Five markers. Journal of Personality Assessment, 65, 506516.CrossRefGoogle Scholar
Shirtcliff, E. A., & Essex, M. J. (2008). Concurrent and longitudinal associations of basal and diurnal cortisol with mental health symptoms in early adolescence. Developmental Psychobiology, 50, 690703.Google Scholar
Steptoe, A., Owne, N., Kunz-Ebrecht, S. R., & Brydon, L. (2004). Loneliness and neuroendocrine, cardiovascular, and inflammatory stress responses in middle-aged men and women. Psychoneuroendocrinology, 29, 593611.Google Scholar
Stone, A. A., & Shiffman, S. (1994). Ecological Momentary Assessment (EMA) in behavioral medicine. Annals of Behavioral Medicine, 16, 199202.Google Scholar
Tafet, G. E., & Bernardini, R. (2003). Psychoneuroendocrinological links between chronic stress and depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 893903.Google Scholar
Thase, M. E. (2009). Neurobiological aspects of depression. In Gotlib, I. H. & Hammen, C. L. (Eds.), Handbook of depression (2nd ed., pp. 187217). New York: Guilford Press.Google Scholar
Uhde, T. W., Tancer, M. E., Gelernter, C. S., & Vittone, B. J. (1994). Normal urinary free cortisol and postdexamethasone cortisol in social phobia: comparison to normal volunteers. Journal of Affective Disorders, 30, 155161.CrossRefGoogle ScholarPubMed
Uliaszek, A. A., Zinbarg, R. E., Mineka, S., Craske, M. G., Sutton, J. M., Griffith, J. W., et al. (2010). The role of neuroticism and extraversion in the stress–anxiety and stress–depression relationships. Anxiety Stress and Coping, 2, 119.Google Scholar
van Eck, M., Berkhof, H., Nicolson, N., & Sulon, J. (1996). The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosomatic Medicine, 58, 447458.Google Scholar
van Veen, J. F., van Vliet, I. M., DeRijk, R. H., van Pelt, J., Mertens, B., & Zitman, F. G. (2008). Elevated alpha-amylase but not cortisol in generalized social anxiety disorder. Psychoneuroendocrinology, 33, 13131321.Google Scholar
Vreeburg, S. A, Hoogendijk, W. J., van Pelt, J., de Rijk, R. H., Verhagen, J. C., van Dyck, R., et al. (2009). Major depressive disorder and hypothalamic–pituitary–adrenal axis activity: Results from a large cohort study. Archives of General Psychiatry, 66, 617626.CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A., Weber, K., Assenheimer, J. S., Strauss, M.E., & McCormick, R. A. (1995). Testing a tripartite model: II. Exploring the symptom structure of anxiety and depression in student, adult, and patient samples. Journal of Abnormal Psychology, 104, 1525.Google Scholar
Watson, D., Weber, K., Assenheimer, J .S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995). Testing a tripartite model. I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. Journal of Abnormal Psychology, 104, 314.Google Scholar
Yehuda, R., Southwick, S. M., Nussbaum, G., Giller, E. L., & Mason, J. W. (1990). Low urinary cortisol excretion in PTSD. Journal of Nervous and Mental Disease, 178, 366369.Google Scholar
Zinbarg, R. E., Mineka, S., Craske, M. G., Griffith, J. W., Sutton, J., Rose, R. D., et al. (2010). The Northwestern–UCLA youth emotion project: Associations of cognitive vulnerabilities, neuroticism and gender with past diagnoses of emotional disorders in adolescents. Behaviour Research and Therapy, 48, 347358.Google Scholar