Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T08:02:21.509Z Has data issue: false hasContentIssue false

Asymmetric brain function, affective style, and psychopathology: The role of early experience and plasticity

Published online by Cambridge University Press:  31 October 2008

Richard J. Davidson*
Affiliation:
University of Wisconsin-Madison
*
Address correspondence and reprint requests to: Richard J. Davidson, Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706.

Abstract

A model of asymmetric contributions to the control of different subcomponents of approach- and withdrawal-related emotion and psychopathology is presented. Two major forms of positive affect are distinguished. An approach-related form arises prior to goal attainment, and another form follows goal attainment. The former is hypothesized to be associated with activation of the left prefrontal cortex. Individual differences in patterns of prefrontal activation are stable over time. Hypoactivation in this region is proposed to result in approach-related deficits and increase an individual's vulnerability to depression. Data in support of these proposals are presented. The issue of plasticity is then considered from several perspectives. Contextual factors are superimposed upon tonic individual differences and modulate the magnitude of asymmetry. Pharmacological challenges also alter patterns of frontal asymmetry. A diverse array of evidence was then reviewed that lends support to the notion that these patterns of asymmetry may be importantly influenced by early environmental factors that result in enduring changes in brain function and structure.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders. Washington, DC: Author.Google Scholar
Baxter, L. R., Schwartz, J. M., Bergman, K. S., Szuba, M. P., Guze, R. H., Mazziotta, J. C., Alazraki, A., Selin, C. E., Ferng, H. -K., Munford, P., & Phelps, M. E. (1992). Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Archives of General Psychiatry, 49, 681689.CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C. H., Mendelson, M., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.CrossRefGoogle ScholarPubMed
Coren, S., & Porac, C. (1980). Birth factors and laterality: Effects of birth order, parental age, and birth stress on four indices of lateral preference. Behavior Genetics, 10, 123138.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20, 125151.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Emotion, 7, 115138.CrossRefGoogle Scholar
Davidson, R. J., Chapman, J. P., Chapman, L. P., & Henriques, J. B. (1990). Asymmetrical brain electrical activity discriminates between psychometrically-matched verbal and spatial cognitive tasks. Psychophysiology, 27, 528543.CrossRefGoogle ScholarPubMed
Davidson, R. J., Coe, C., Donzella, B., & Ershler, W. (1994). Anterior brain asymmetry predicts changes in immune function in response to naturally occurring and experimentally produced stress. Manuscript in preparation.Google Scholar
Davidson, R. J., Donzella, B., & Dottl, D. (1994). Individual differences in anterior brain asymmetry predict persistence of emotion-modulated startle. Manuscript in preparation.Google Scholar
Davidson, R. J., Ekman, P., Saron, C., Senulis, J., & Friesen, W. V. (1990). Approach/withdrawal and cerebral asymmetry: Emotional expression and brain physiology, I. Journal of Personality and Social Psychology, 58, 330341.CrossRefGoogle ScholarPubMed
Davidson, R. J., & Fox, N. A. (1982). Asymmetrical brain activity discriminates between positive versus negative affective stimuli in human infants. Science, 218, 12351237.CrossRefGoogle Scholar
Davidson, R. J., Henriques, J. A., Tomarken, A. J., & Marshall, J. (1994). While a phobic waits: Changes in brain electrical activity during the anticipation of making a public speech in socialphobics. Manuscript in preparation.Google Scholar
Davidson, R. J., Hugdahl, K., & Donzella, B. (1994). Rapidity of extinction of a classically-conditioned aversive response is predicted by individual differences in frontal asymmetry. Manuscript in preparation.Google Scholar
Davidson, R. J., Kalin, N. H., & Shelton, S. E. (1992). Lateralized effects of diazepam on frontal brain electrical asymmetries in rhesus monkeys. Biological Psychiatry, 32, 438451.CrossRefGoogle ScholarPubMed
Davidson, R. J., & Tomarken, A. J. (1989). Laterality and emotion: An electrophysiological approach. In Boiler, F. & Grafman, J. (Eds.), Handbook of neuropsychology (pp. 419441). Amsterdam: Elsevier.Google Scholar
Denenberg, V. H., & Yutzey, D. A. (1985). Hemispheric laterality, behavioral asymmetry and the effects of early experience in rats. In Click, S. D. (Ed.), Cerebral lateralization in nonhuman species (pp. 109133). New York: Academic Press.CrossRefGoogle Scholar
Diener, E., & Emmons, R. A. (1984). The independence of positive and negative affect. Journal of Personality and Social Psychology, 47, 11051117.CrossRefGoogle ScholarPubMed
Drevets, W. C., Videen, T. O., Macleod, A. K., Haller, J. W., & Raichle, M. E. (1992). PET images of blood flow changes during anxiety: Correction. Science, 256, 1696.CrossRefGoogle ScholarPubMed
Ekman, P., & Davidson, R. J. (1993). Voluntary smiling changes regional brain activity. Psychological Science, 4, 342345.CrossRefGoogle Scholar
Fox, N. A., & Davidson, R. J. (1986). Taste-elicited changes in facial signs of emotion and the asymmetry of brain electrical activity in human newborns. Neuropsychologia, 24, 417422.CrossRefGoogle ScholarPubMed
Fride, E., & Weinstock, M. (1988). Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sciences, 42, 10591065.CrossRefGoogle ScholarPubMed
Gainotti, G. (1972). Emotional behavior and hemispheric side of lesion. Cortex, 8, 4155.CrossRefGoogle ScholarPubMed
Gainotti, G., Caltagirone, C., & Zoccolotti, P. (1993). Left/right and cortical/subcortical dichotomies in the neuropsychological study of human emotions. Cognition and Emotion, 7, 7193.CrossRefGoogle Scholar
Geschwind, N., & Behan, P. (1982). Left handedness: Association with immune disease, migraine, and developmental learning disorder. Proceedings of the National Academy of Sciences, 79, 50975100.CrossRefGoogle Scholar
Geschwind, N., & Galaburda, A. M. (1987). Cerebral lateralization: Biological mechanisms, associations and pathology. Cambridge, MA: MIT Press.Google Scholar
Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In Gunnar, M. R. & Nelson, C. A. (Eds.), Minnesota Symposia on Child Psychology: Vol. 24. Developmental behavior neuroscience (pp. 155200). Hillsdale, NJ: Erlbaum.Google Scholar
Greenough, W. T., Larson, J. R., & Withers, G. S. (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behavioral and Neural Biology, 44, 301314.CrossRefGoogle Scholar
Henriques, J. B., & Davidson, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed subjects and healthy controls. Journal of Abnormal Psychology, 99, 2231.CrossRefGoogle Scholar
Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100, 535545.CrossRefGoogle ScholarPubMed
Henriques, J. B., Glowacki, J. M., & Davidson, R. J. (1994). Reward fails to alter response bias in depression. Journal of Abnormal Psychology, 103, 460466.CrossRefGoogle ScholarPubMed
House, A., Dennis, M., Warlow, C., Hawton, K., & Molyneux, A. (1990). Mood disorders after stroke and their relation to lesion location. Brain, 113, 11131129.CrossRefGoogle ScholarPubMed
Huttenlocker, P. R. (1979). Synaptic density in human frontal cortex — Developmental changes and effects of aging. Brain Research, 163, 195205.Google Scholar
Huttenlocker, P. R., de Courten, C., Garey, L. J., & Van der Loos, H. (1982). Synaptogenesis in human visual cortex—Evidence for synapse elimination during normal development. Neuroscience Letters, 33, 247252.CrossRefGoogle Scholar
Jackson, J. H. (1878). On the affections of speech from disease of the brain. Brain, 1, 304330.CrossRefGoogle Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological bases of childhood shyness. Science, 240, 167171.CrossRefGoogle ScholarPubMed
Kalin, N. H., & Shelton, S. E. (1989). Defensive behaviors in infant rhesus monkeys: Environmental cues and neurochemical regulation. Science, 243, 17181721.CrossRefGoogle ScholarPubMed
Kang, D. H., Davidson, R. J., Coe, C. L., Wheeler, R. W., Tomarken, A. J., & Ershler, W. B. (1991). Frontal brain asymmetry and immune function. Behavioral Neuroscience, 105, 860869.CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., & Glaser, R. (1991). Stress and immune function in humans. In Ader, R., Felten, D. L., & Cohen, N. (Eds.), Psychoneuroimmunology (2nd ed., pp. 849867). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Lane, R. D., Merikangas, K. R., Schwartz, G. E., Huang, S. S., & Prusoff, B. A. (1990). Inverse relationship between defensiveness and lifetime prevalence of psychiatric disorder. American Journal of Psychiatry, 147, 573578.Google ScholarPubMed
Larsen, R. J., & Diener, E. (1987). Affect intensity as an individual difference characteristic: A review. Journal of Research in Personality, 21, 139.CrossRefGoogle Scholar
Lazarus, R. S. (1991). Emotion and adaptation. New York: Oxford University Press.CrossRefGoogle Scholar
Ledoux, J. E. (1987). Emotion. In Mountcastle, V. B. (Ed.), Handbook of physiology: Vol. V. Higher functions of the brain, part I (pp. 419459). Bethesda, MD: American Physiological Society.Google Scholar
Lehmann, D. (1987). Principles of spatial analysis. In Gevins, A. G. & RÉMond, A. (Eds.), Handbook of electroencephalography and clinical neurophysiology (Vol. 1, pp. 309354). Amsterdam: Elsevier.Google Scholar
Levy, J. (1983). Individual differences in cerebral hemisphere asymmetry: Theoretical issues and experimental considerations. In Hellige, J. B. (Ed.), Cerebral hemisphere asymmetry: Method, theory and application (pp. 465515). New York: Praeger.Google Scholar
Mathew, R. J., Wilson, W. H., & Daniel, D. G. (1985). The effect of nonsedating doses of diazepam on regional cerebral blood flow. Biological Psychiatry, 20, 11091116.CrossRefGoogle ScholarPubMed
Michel, C. M., Kaufman, L., & Williamson, S. J. (1994). Duration of EEC and MEG alpha suppression increases with angle in a mental rotation task. Journal of Cognitive Neuroscience, 6, 139150.CrossRefGoogle Scholar
Morgan, M. A., Romanski, L. M., & Ledoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109113.CrossRefGoogle ScholarPubMed
Nachshon, I., & Denno, D. (1987). Birth stress and lateral preferences. Cortex, 23, 4558.CrossRefGoogle ScholarPubMed
Pivik, T., Broughton, R., Coppola, R., Davidson, R. J., Fox, N. A., & Nuwer, R. (1993). Guidelines for quantitative electroencephalography in research contexts. Psychophysiology, 30, 547558.CrossRefGoogle ScholarPubMed
Plomin, R., Owen, M. J., & McGuffin, P. (1994). The genetic basis of complex human behaviors. Science, 264, 17331739.CrossRefGoogle ScholarPubMed
Reiman, E. M., Fusselman, M. J., Fox, P. T., & Raichle, M. E. (1989). Neuroanatomical correlates of anticipatory anxiety. Science, 243, 10711074.CrossRefGoogle ScholarPubMed
Renoux, G., BiziÈRe, K., Renoux, M., & Guillaumin, J. (1983). A balanced brain symmetry modulates T cell-mediated events. Journal of Neuroimmunology, 5, 227238.CrossRefGoogle Scholar
Robinson, R. G., Kubos, K. G., Starr, L. B., Rao, K., & Price, T. R. (1984). Mood disorders in stroke patients. Importance of lesion location. Brain, 107, 8193.CrossRefGoogle Scholar
Russell, J. A. (1980). A circumplex model of emotion. Journal of Personality and Social Psychology, 39, 11611178.CrossRefGoogle Scholar
Schaffer, C. E., Davidson, R. J., & Saron, C. (1983). Frontal and parietal electroencephalogram asymmetry in depressed and nondepressed subjects. Biological Psychiatry, 18, 753762.Google ScholarPubMed
Schwartz, M. (1988). Handedness, prenatal stress and pregnancy complications. Neuropsychologia, 26, 925929.CrossRefGoogle ScholarPubMed
Segalowitz, S. J., & Berge, B. E. (in press). Functional asymmetries in infancy and early childhood: A review of electrophysiological studies and their implications. In Davidson, R. J. & Hugdahl, K. (Eds.), Brain asymmetry: Modern perspectives. Cambridge, MA: MIT Press.Google Scholar
Shagass, C. (1972). Electrical activity of the brain. In Greenfield, N. S. & Sternbach, R. A. (Eds.), Handbook of psychophysiology (pp. 263328). New York: Holt, Rinehart and Winston.Google Scholar
Smith, O. A., Devito, J. L., & Astley, C. A. (1990). Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. American Journal of Physiology, 259, R943-R954.Google ScholarPubMed
Spitzer, R. L., Endicott, J., & Robins, E. (1978). Research Diagnostic Criteria (RDC) for a selected group of functional disorders (3rd ed.). New York: New York State Psychiatric Institute, Biometrics Research.Google Scholar
Stein, N. L., & Trabasso, T. (1992). The organization of emotional experience: Creating links among emotion, thinking, language, and intentional action. Cognition and Emotion, 6, 225244.CrossRefGoogle Scholar
Takahashi, L. K. (in press). Organizing action of corticosterone on the development of behavioral inhibition in the preweanling rat. Developmental Brain Research.Google Scholar
Takahashi, L. K., & Rubin, W. W. (1993). Corticosteroid induction of threat-induced behavioral inhibition in preweanling rats. Behavioral Neuroscience, 107, 860866.CrossRefGoogle ScholarPubMed
Tomarken, A. J., & Davidson, R. J. (1994). Frontal brain activation in repressors and non-repressors. Journal of Abnormal Psychology, 103, 339349.CrossRefGoogle Scholar
Tomarken, A. J., Davidson, R. J., & Henriques, J. B. (1990). Resting frontal brain asymmetry predicts affective responses to films. Journal of Personality and Social Psychology, 59, 791801.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of Personality and Social Psychology, 62, 676687.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Davidson, R. J., Wheeler, R. W., & Kinney, L. (1992). Psychometric properties of resting anterior EEG asymmetry: Temporal stability and internal consistency. Psychophysiology, 29, 576592.CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 10631070.CrossRefGoogle ScholarPubMed
Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219235.CrossRefGoogle Scholar
Wheeler, R. E., Davidson, R. J., & Tomarken, A. J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30, 8289.CrossRefGoogle ScholarPubMed