Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T04:45:22.798Z Has data issue: false hasContentIssue false

Attention-deficit disorder (attention-deficit/ hyperactivity disorder without hyperactivity): A neurobiologically and behaviorally distinct disorder from attention-deficit/hyperactivity disorder (with hyperactivity)

Published online by Cambridge University Press:  01 November 2005

ADELE DIAMOND
Affiliation:
University of British Columbia, Vancouver, and BC Children's Hospital, Vancouver

Abstract

Most studies of attention-deficit/hyperactivity disorder (ADHD) have focused on the combined type and emphasized a core problem in response inhibition. It is proposed here that the core problem in the truly inattentive type of ADHD (not simply the subthreshold combined type) is in working memory. It is further proposed that laboratory measures, such as complex-span and dual-task dichotic listening tasks, can detect this. Children with the truly inattentive type of ADHD, rather than being distractible, may instead be easily bored, their problem being more in motivation (underarousal) than in inhibitory control. Much converging evidence points to a primary disturbance in the striatum (a frontal–striatal loop) in the combined type of ADHD. It is proposed here that the primary disturbance in truly inattentive-type ADHD (ADD) is in the cortex (a frontal–parietal loop). Finally, it is posited that these are not two different types of ADHD, but two different disorders with different cognitive and behavioral profiles, different patterns of comorbidities, different responses to medication, and different underlying neurobiologies.Preparation of this manuscript was supported by grants from NIDA (R01 DA19685-16A2) and the McDonnell Foundation (JSMF Grant 21002016). The author gratefully thanks Russ Barkley, Dante Cicchetti, Michael Posner, and Margaret Weiss for comments on an earlier draft of the manuscript. Of course, only the author bears responsibility for any errors in this paper.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aaron, P., Joshi, R. M., & Phipps, J. (2004). A cognitive tool to diagnose predominantly inattentive ADHD behaviour. Journal of Attention Disorders 7, 125135.Google Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th edition). Washington, DC: Author.
Auerbach, J. G., Benjamin, J., Faroy, M., Geller, V., & Ebstein, R. (2001). DRD4 related to infant attention and information processing: A developmental link to ADHD? Psychiatric Genetics 11, 3135.Google Scholar
Awh, E., Anllo–Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: Evidence from event-related potentials. Journal of Cognitive Neuroscience 12, 840847.Google Scholar
Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Science 5, 119126.Google Scholar
Aylward, E. H., Reiss, A. L., Reader, M. J., Singer, H. S., Brown, J. E., & Denckla, M. B. (1996). Basal ganglia volumes in children with attention-deficit hyperactivity disorder. Journal of Child Neurology 11, 112115.Google Scholar
Baddeley, A. (1992). Working memory. Science 255, 556559.Google Scholar
Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.
Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology 8, 485493.Google Scholar
Barbizet, J. (1970). Prolonged organic amnesias. In J. Barbizet (Ed.), Human memory and its pathology (pp. 2593). San Francisco, CA: W. H. Freeman.
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin 121, 6594.Google Scholar
Barkley, R. A. (2000). A new look at ADHD: Inhibition, time, and self-control [Video].
Barkley, R. A. (2001). The inattentive type of ADHD as a distinct disorder: What remains to be done. Clinical Psychology: Science and Practice 8, 489493.Google Scholar
Barkley, R. A., DuPaul, G. J., & McMurray, M. B. (1990). A comprehensive evaluation of attention deficit disorder with and without hyperactivity. Journal of Consulting and Clinical Psychology 58, 775789.Google Scholar
Barkley, R. A., DuPaul, G. J., & McMurray, M. B. (1991). Attention deficit disorder with and without hyperactivity: Clinical response to three dose levels of methylphenidate. Pediatrics 87, 519531.Google Scholar
Barkley, R. A., Grodzinsky, G., & DuPaul, G. (1992). Frontal lobe functions in attention deficit disorder with and without hyperactivity: A review and research report. Journal of Abnormal Child Psychology 20, 163188.Google Scholar
Barnes, L. L., Nelson, J. K., & Reuter–Lorenz, P. A. (2001). Object based attention and object working memory: Overlapping processes revealed by selective interference effect in humans. Progress in Brain Research 134, 471481.Google Scholar
Barr, C. L., Wigg, K. G., Bloom, S., Schachar, R., Tannock, R., Roberts, W., Malone, M., & Kennedy, J. L. (2000). Further evidence from haplotype analysis for linkage of the dopamine D4 receptor gene and ADHD. American Journal of Medical Genetics 96, 262267.Google Scholar
Bayliss, D. M., & Roodenrys, S. (2000). Executive processing and attention deficit hyperactivity disorder: An application of the supervisory attentional system. Developmental Neuropsychology 17, 161180.Google Scholar
Benedetto–Nasho, E., & Tannock, R. (1999). Math computation, error patterns and stimulant effects in children with attention deficit hyperactivity disorder. Journal of Attention Disorders 3, 121134.Google Scholar
Cantwell, D. P. (1983). Diagnostic validity of the hyperactive child (attention deficit disorder with hyperactivity) syndrome. Psychiatric Developments 1, 277300.Google Scholar
Carlson, C. L. (1986). Attention deficit disorder without hyperactivity: A review of preliminary experimental evidence. In B. B. Lahey & A. E. Kazdin (Eds.), Advances in clinical child psychology (Vol. 9, pp. 153175). New York: Plenum Press.
Carlson, C. L., Lahey, B. B., & Neeper, R. (1986). Direct assessment of the cognitive correlates of attention deficit disorders with and without hyperactivity. Journal of Psychopathology Behavioral Assessment 8, 6986.Google Scholar
Carlson, C. L., & Mann, M. (2000). Attention-deficit/hyperactivity disorder, predominantly inattentive subtype. Child & Adolescent Psychiatric Clinics of North America 9, 499510.Google Scholar
Carlson, C. L., & Mann, M. (2002). Sluggish cognitive tempo predicts a different pattern of impairment in the attention deficit hyperactivity disorder, predominantly inattentive type. Journal of Clinical Child and Adolescent Psychology 31, 123129.Google Scholar
Case, R. (1972). Validation of a neo-Piagetian capacity construct. Journal of Experimental Child Psychology 14, 287302.Google Scholar
Case, R. (1992a). The role of the frontal lobes in the regulation of cognitive development. Brain and Cognition 20, 5173.Google Scholar
Case, R. (1992b). The mind's staircase: Exploring the conceptual underpinnings of children's thought and knowledge. Hillsdale, NJ: Erlbaum.
Case, R. (1995). Capacity-based explanations of working memory growth: A brief history and reevaluation. In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 2344). Mahwah, NJ: Erlbaum.
Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology 33, 386404.Google Scholar
Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., Vauss, Y. C., Vaituzis, A. C., Dickstein, D. P., Sarfatti, S. E., & Rapoport, J. L. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 36, 374383.Google Scholar
Casey, B., Forman, S., Franzen, P., Berkowitz, A., Braver, T., Nystrom, L., Thomas, K., & Noll, D. (2001). Sensitivity of prefrontal cortex to changes in target probability: A functional MRI study. Human Brain Mapping 13, 2633.Google Scholar
Castellanos, F. X. (1997). Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clinical Pediatrics 36, 381393.Google Scholar
Castellanos, F. X., Elia, J., Kruesi, J. J. P., Gulotta, C. S., Mefford, I. N., Potter, W. Z., Ritchie, G. F., & Rapoport, J. L. (1994). Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Research 52, 305316.Google Scholar
Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., Sarfatti, S. E., Vauss, Y. C., Snell, J. W., Lange, N., Kaysen, D., Krain, A. L., Ritchie, G. F., Rajapakse, J. C., & Rapoport, J. L. (1996). Quantitative brain magnetic resonance imaging in attention-deficit/hyperactivity disorder. Archives of General Psychiatry 53, 607616.Google Scholar
Chee, P., Logan, G., Schachar, R., Lindsay, P., & Wachsmuth, R. (1989). Effects of event rate and display time on sustained attention in hyperactive, normal and control children. Journal of Abnormal Child Psychology 17, 371391.Google Scholar
Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience 11, 617630.Google Scholar
Conte, R., Kinsbourne, M., Swanson, J., Zirk, H., & Samuels, M. (1986). Presentation rate effects on paired associate learning by attention deficit disordered children. Child Development 57, 681687.Google Scholar
Conway, A. R. A., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin and Review 8, 331335.Google Scholar
Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General 123, 354373.Google Scholar
Conway, A. R. A., Tuholski, S. W., Shisler, R. J., & Engle, R. (1999). The effect of memory load on negative priming: An individual differences investigation. Memory and Cognition 27, 10421050.Google Scholar
Corkum, P. V., & Siegel, L. S. (1993). Is the continuous performance task a valuable research tool for use with children with attention-deficit-hyperactivity disorder? Journal of Child Psychology and Psychiatry 34, 12171239.Google Scholar
Cook, E. H., Jr., Stein, M. A., Krasowski, M. D., Cox, N. J., Olkon, D. M., Kieffer, J. E., & Leventhal, B. L. (1995). Association of attention-deficit disorder and the dopamine transporter gene. American Journal of Human Genetics 56, 993998.Google Scholar
Cook, E. J. (2000). Genetics of psychiatric disorders: Where have we been and where are we going? American Journal of Psychiatry 157, 10391040.Google Scholar
Crammond, J. (1992). Analyzing the basic cognitive developmental processes of children with specific types of learning disability. In R. Case (Ed.), The mind's staircase: Exploring the conceptual underpinnings of human thought and knowledge (pp. 285303). Hillsdale, NJ: Erlbaum.
Daly, G., Hawi, Z., Fitzgerald, M., & Gill, M. (1999). Mapping susceptibility loci in attention deficit hyperactivity disorder: Preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Molecular Psychiatry 4, 192196.Google Scholar
Daneman, M., & Carpenter, P. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior 19, 450466.Google Scholar
de Fockert, J., Rees, G., Frith, C., & Lavie, N. (2001). The role of working memory in visual selective attention. Science 291, 18031806.Google Scholar
deHaas, P. A., & Young, R. D. (1984). Attention styles of hyperactive and normal girls. Journal of Abnormal Child Psychology 12, 531546.Google Scholar
De La Garza, R., & Madras, B. K. (2000). [(3)H]PNU-101958, a D(4) dopamine receptor probe, accumulates in prefrontal cortex and hippocampus of non-human primate brain. Synapse 37, 232244.Google Scholar
Dempster, F. N. (1981). Memory span: Sources of individual and developmental differences. Psychological Bulletin 89, 63100.Google Scholar
Dempster, F. N. (1985). Short-term memory development in childhood and adolescence. In C. J. Brainerd & M. Pressley (Eds.), Basic processes in memory development: Progress in cognitive development research. New York: Springer–Verlag.
D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature 378, 279281.Google Scholar
D'Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research 133, 311.Google Scholar
Diamond, A. (1990). The development and neural bases of memory functions, as indexed by the A-not- and delayed response tasks, in human infants and infant monkeys. Annals of the New York Academy of Sciences 608, 267317.Google Scholar
Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 466503). London: Oxford University Press.
Dresel, S. K. J., Krause, K. H., LaFougere, C., Brinkbaumer, K., Kung, H. F., Hahn, K., & Tatsch, K. (2000). Attention deficit hyperactivity disorder: Binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. European Journal of Nuclear Medicine 27, 15181524.Google Scholar
Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261268.Google Scholar
Durston, S., Fossella, J. A., Casey, B. J., Hulshoff Pol, H. E., Galvan, A., Schnack, H. G., Steenhuis, M. P., Minderaa, R. B., Buitelaar, J. K., Kahn, R. S., & van Engeland, H. (2005). Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Molecular Psychiatry 22.Google Scholar
Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I.-M., Yang, Y., Ulug, A. M., & Casey, B. J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry 53, 871878.Google Scholar
Edelbrock, C., Costello, A. J., Kessler, M. D. (1984). Empirical corroboration of attention deficit disorder. Journal of the American Academy of Child and Adolescent Psychiatry 23, 185190.Google Scholar
Faraone, S. V., Biederman, J., Wever, W., & Russell, R. L. (1998). Psychiatric, neuropsychological, and psychosocial features of DSM-IV subtypes of attention-deficit/hyperactivity disorder: Results from a clinically referred sample. Journal of the American Academy of Child and Adolescent Psychiatry 37, 185193.Google Scholar
Filipek, P. A., Semrud–Clikeman, M., Steingard, R. J., Renshaw, P. F., Kennedy, D. N., & Biederman, J. (1997). Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48, 589601.Google Scholar
Frick, P. J., Lahey, B. B., Applegate, B., Kerdyck, L., Ollendick, T., Hynd, G. W., Garfinkel, B., Greenhill, L., Biederman, J., Barkley, R. A., McBurnett, K., Newcorn, J., & Waldman, I. (1994). DSM-IV field trials for the disruptive behaviour disorders: Symptom utility estimates. Journal of the American Academy of Child & Adolescent Psychiatry 33, 529539.Google Scholar
Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science 7, 237241.Google Scholar
Garris, P. A., & Wightman, R. M. (1994). Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: An in vivo voltametric study. Journal of Neuroscience 14, 442450.Google Scholar
Gascon, G., Johnson, R., & Burd, L. (1986). Central auditory processing and attention deficit disorders. Journal of Child Neurology 1, 2733.Google Scholar
Ghelani, K., Sidhu, R., Jain, U., & Tannock, R. (2004). Reading comprehension and reading related abilities in adolescents with reading disabilities and attention-deficit/hyperactivity disorder. Dyslexia 10, 364384.Google Scholar
Gill, M., Daly, G., Heron, S., Hawl, Z., & Fitzgerald, M. (1997). Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Molecular Psychiatry 2, 311313.Google Scholar
Goldman–Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development 58, 601622.Google Scholar
Goodyear, P., & Hynd, G. (1992). Attention-deficit disorder with and without hyperactivity: Behavioral and neuropsychological differentiation. Journal of Clinical Child Psychology 21, 273305.Google Scholar
Hale, T. S., Hariri, A. R., & McCracken, J. T. (2000). Attention deficit/hyperactivity disorder: Perspectives from neuroimaging. Mental Retardation and Developmental Disabilities 6, 214219.Google Scholar
Hamarman, S., Fossella, J., Ulger, C., Brimacombe, M., & Dermody, J. (2004). Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorder: A pharmacogenetic study. Journal of Child and Adolescent Psychopharmacology 14, 564574.Google Scholar
Hartman, C. A., Willcutt, E. G., Rhee, S. H., & Pennington, B. F. (2004). The relation between sluggish cognitive tempo and DSM-IV ADHD. Journal of Abnormal Child Psychology 32(5), 491503.Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 22, pp. 193225). San Diego, CA: Academic Press.
Heilman, K. M., Voeller, K. S., & Nadeau, S. E. (1991). A possible pathophysiologic substrate of attention deficit hyperactivity disorder. Journal of Child Neurology 6, 7681.Google Scholar
Herrigel, E., & Suzuki, D. T. (1953). Zen in the art of archery. New York: Pantheon Books.
Hinshaw, S. P. (2002). Preadolescent girls with attention-deficit/hyperactivity disorder: I. Background characteristics, comorbidity, cognitive and social functioning, and parenting practices. Journal of Consulting and Clinical Psychology 70, 10861098.Google Scholar
Hitch, G. J., Towse, J. N., & Hutton, U. (2001). What limits children's working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology: General 130, 184198.Google Scholar
Holdnack, J. A., Moberg, P. J., Arnold, S. E., & Gur, R. C. (1995). Speed of processing and verbal learning deficits in adults diagnosed with attention deficit disorder. Neuropsychiatry, Neuropsychology, and Behavioral Neurology 8, 282292.Google Scholar
Hynd, G., Nieves, N., Connor, R., Stone, P., Town, P., & Becker, M. (1989). Attention deficit disorder with and without hyperactivity: Reaction time and speed of cognitive processing. Journal of Learning Disabilities 22, 573580.Google Scholar
Hynd, G. W., Hern, K. L., Novey, E. S., Eliopulos, D., Marshall, R., Gonzalez, J. J., & Voeller, K. K. (1993). Attention deficit-hyperacitivity disorder and asymmetry of the caudate nucleus. Journal of Child Neurology 8, 339347.Google Scholar
Hynd, G. W., Lorys, A. R., Semrud–Clikeman, M., Nieves, N., Huettner, M. I., & Lahey, B. B. (1991). Attention deficit disorder without hyperactivity: A distinct behavioral and neurocognitive syndrome. Journal of Child Neurology 6, 3743.Google Scholar
Ishimatsu, M., Kidani, Y., Tsuda, A., & Akasu, T. (2002). Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus. Journal of Neurophysiology 87, 12061212.Google Scholar
Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., & Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: Association between striatal dopamine markers and motor hyperactivity. Biological Psychiatry 57, 229238.Google Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review 99, 122149.Google Scholar
Kail, R. (1992). Processing, speed, speech rate, and memory. Developmental Psychology 28, 899904.Google Scholar
Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica 86, 199225.Google Scholar
Kane, M. J., Bleckley, M., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General 130, 169183.Google Scholar
Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology 26, 336358.Google Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review 9, 637671.Google Scholar
Krause, K. H., Dresel, S. H., Krause, J., Kung, H. F., & Tatsch, K. (2000). Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: Effects of methylphenidate as measured by single photon emission computed tomography. Neuroscience Letters 285, 107110.Google Scholar
Krause, K. H., Dresel, S. H., Krause, J., Kung, H. F., Tatsch, K., & Ackenheil, M. (2002). Stimulant-like action of nicotine on striatal dopamine transporter in the brain of adults with attention deficit hyperactivity disorder. International Journal of Neuropsychopharmacology 5, 111113.Google Scholar
Krause, K.-H., Dresel, S. H., Krause, J., la Fougere, C., & Ackenheil, M. (2003). The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neuroscience & Biobehavioral Reviews 27, 605613.Google Scholar
LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage 10, 695704.Google Scholar
Lahey, B. B., & Carlson, C. (1991). Validity of the diagnostic category of attention deficit disorder without hyperactivity: A review of the literature. Journal of Learning Disabilities 24, 110120.Google Scholar
Lahey, B. B., Schaughency, E., Hynd, G., Carlson, C., & Niever, C. (1987). Attention deficit disorder with and without hyperactivity: Comparison of behavioral characteristics of clinic referred children. Journal of the American Academy of Child and Adolescent Psychiatry 26, 718723.Google Scholar
Lang, A. E., & Johnson, K. (1987). Akathisia in idiopathic Parkinson's disease. Neurology 37, 477480.Google Scholar
Lipschutz, B., Kolinsky, R., Damhaut, P., Wikler, D., & Goldman, S. (2001). Attention-dependent changes of activation and connectivity in dichotic listening: Evidence from two studies. NeuroImage, 13, S327.Google Scholar
Lorch, E. P., Milich, R., Sanchez, R. P., van den Broek, P., Baer, S., Hooks, K., Hartung, C., & Welsh, R. (2000). Comprehension of televised stories in boys with attention deficit/hyperactivity disorder and nonreferred boys. Journal of Abnormal Psychology 109, 321330.Google Scholar
Lou, H. C., Hendriksen, L., & Bruhn, P. (1984). Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Archives of Neurology 41, 825829.Google Scholar
Lou, H. C., Hendriksen, L., Bruhn, P., Borner, H., & Nielsen, J. B. (1989). Striatal dysfunction in attention deficit and hyperkinetic disorder. Archives of Neurology 46, 4852.Google Scholar
Luman, M., Oosterlaan, J. A., & Sergeant, J. (2005). The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clinical Psychology Review 25, 183213.Google Scholar
Luria, A. R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books.
Maedgen, J. W., & Carlson, C. L. (2000). Social functioning and emotional regulation in the attention deficit hyperactivity disorder subtypes. Journal of Clinical Child Psychology 29, 3042.Google Scholar
Marshall, R. M., Hynd, G. W., Handwerk, M. J., & Hall, J. (1997). Academic underachievement in ADHD subtypes. Journal of Learning Disabilities 30, 635642.Google Scholar
Mariani, M., & Barkley, R. A. (1997). Neuropsychological and academic functioning in preschool boys with attention deficit hyperactivity disorder. Developmental Neuropsychology 13, 111129.Google Scholar
Mataro, M., Garcia–Sanchez, C., Junque, C., Estevez–Gonzalez, A., & Pujol, J. (1997). Magnetic resonance imaging measurement of the caudate nucleus in adolescents with attention-deficit hyperactivity disorder and its relationship with neuropsychological and behavioural measures. Archives of Neurology 54, 963968.Google Scholar
McInnes, A., Humphries, T., Hogg–Johnson, S., & Tannock, R. (2003). Listening comprehension and working memory are impaired in attention-deficit hyperactivity disorder irrespective of language impairment. Journal of Abnormal Child Psychology 31, 427443.Google Scholar
Meador–Woodruff, J. H., Damask, S. P., Wang, J., Haroutunian, V., Davis, K. L., & Watson, S. J. (1996). Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 15, 1729.Google Scholar
Menna, R. (1989). Working memory and development: An EEG Investigation. Unpublished manuscript, University of Toronto.
Miles, C., Morgan, M. J., Milne, A. B., & Morris, E. D. M. (1996). Developmental and individual differences in visual memory span. Current Psychology 15, 5367.Google Scholar
Milich, R., Balentine, A. C., & Lynam, D. R. (2001). ADHD combined type and ADHD predominantly inattentive type are distinct and unrelated disorders. Clinical Psychology: Science and Practice 8, 463488.Google Scholar
Milich, R. S., & Loney, J. (1979). The factor composition of the WISC for hyperkinetic/MBD males. Journal of Learning Disabilities 12, 491495.Google Scholar
Miller, B. T., Verstynen, T., Raye, C. L., Mitchell, K. J., Johnson, M. K., & D'Esposito, M. (2003). The role of dorsolateral PFC in refreshing just-activated information: A TMS study. Society of Neuroscience, 287, 211.Google Scholar
Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. New York: Cambridge University Press.
Morgan, S. T., Hansen, J. C., & Hillyard, S. A. (1996). Selective attention to stimulus location modulates the steady-state visual evoked potential. Proceedings of the National Academy of Sciences 93, 47704774.Google Scholar
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin 126, 220246.Google Scholar
Nigg, J. T. (2001). Is ADHD an inhibitory disorder? Psychological Bulletin 127, 571598.Google Scholar
Nigg, J. T., Blaskey, L. G., Huang–Pollock, C. L., & Rappley, M. D. (2002). Neuropsychological executive functions and DSM-IV ADHD subtypes. Journal of the American Academy of Child and Adolescent Psychiatry 41, 5966.Google Scholar
Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience 9, 13291339.Google Scholar
Park, D. C., & Payer, D. (2005). Working memory across the adult life span. In E. Bialystok & F. Craik (Eds.), Lifespan cognition: Mechanisms of change. Oxford: Oxford University Press.
Pascual–Leone, J. A. (1970). A mathematical model for transition in Piaget's developmental stages. Acta Psychologia 32, 301345.Google Scholar
Peers, P. V., Ludwig, C. J. H., Rorden, C., Cusack, R., Bonfiglioli, C., Bundesen, C., Driver, J., Antoun, N., & Duncan, J. (2005). Attentional functions of parietal and frontal cortex. Cerebral Cortex.Google Scholar
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry 37, 5187.Google Scholar
Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing: Evidence from neuroimaging studies. Annals of the New York Academy of Sciences 769, 8596.Google Scholar
Petrides, M. (1996). Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philosophical Transactions of the Royal Society of London 351, 14551462.Google Scholar
Pomerleau, C. S. (1997). Co-factors for smoking and evolutionary psychobiology. Addiction 92, 397408.Google Scholar
Powell, K. B., & Voeller, K. K. (2004). Prefrontal executive function syndromes in children. Journal of Child Neurology 19, 785797.Google Scholar
Pugzles Lorch, E., Milich, R., & Sanchez, R. P. (1998). Story comprehension in children with ADHD. Clinical Child and Family Psychology Review 1, 163178.Google Scholar
Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. NeuroImage 22, 562573.Google Scholar
Riccio, C. A., Hynd, G. W., Cohen, M. J., Hall, J. (1994). Comorbidity of central auditory processing disorder and attention-deficit hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 33, 849857.Google Scholar
Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex.Google Scholar
Rowe, D. C., Stever, C., Giedinghagen, L. N., Gard, J. M., Cleveland, H. H., Terris, S. T., Mohr, J. H., Sherman, S., Abramowitz, A., & Waldman, I. D. (1998). Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder. Molecular Psychiatry 3, 419426.Google Scholar
Rueckert, L., & Grafman, J. (1998). Sustained attention deficits in patients with lesions of posterior cortex. Neuropsychologia 36, 653660.Google Scholar
Salthouse, T. A. (1992). Influence of processing speed on adult age differences in working memory. Acta Psychologica 79, 155170.Google Scholar
Salthouse, T. A. (1993). Speed mediation of adult age differences in cognition. Developmental Psychology 29, 722738.Google Scholar
Salthouse, T. A., & Meinz, E. J. (1995). Aging, inhibition, working memory, and speed. Journal of Gerontology Series B, Psychological Sciences and Social Sciences 50, 297306.Google Scholar
Sanchez, R. P., Lorch, E. P., Milich, R., & Welsh, R. (1999). Comprehension of televised stories by preschool children with ADHD. Journal of Clinical Child Psychology 28, 376385.Google Scholar
Sanchez–Gonzalez, M. A., & Cavada, C. (2003). Dopamine transporter expression in the primate brain. Paper presented at the Society for Neuroscience, 33rd Annual Meeting [2003 Abstract Viewer/Itinerary Planner].
Schrimsher, G. W., Billingsley, R. L., Jackson, E. F., & Moore, B. D. (2002). Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children. Journal of Child Neurology 17, 877884.Google Scholar
Seeman, P., & Madras, B. K. (1998). Anti-hyperactivity medication: Methylphenidate and amphetamine. Molecular Psychiatry 3, 386396.Google Scholar
Sergeant, J. A., Geurts, H., Huijbregts, S., Scheres, A., & Oosterlaan, J. (2003). The top and the bottom of ADHD: A neuropsychological perspective. Neuroscience & Biobehavioral Reviews 27, 583592.Google Scholar
Sesack, S. R., Hawrylak, V. A., Matus, C., Guido, M. A., & Levey, A. I. (1998). Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. Journal of Neuroscience 18, 26972708.Google Scholar
Shenker, A. (1992). The mechanism of action of drugs used to treat attention-deficit hyperactivity disorder: Focus on catecholoamine receptor pharmacology. Advanced Pediatrics 39, 337382.Google Scholar
Shue, K. L., & Douglas, V. I. (1992). Attention deficit hyperactivity disorder and the frontal lobe syndrome. Brain and Cognition 20, 104124.Google Scholar
Siegel, L. (1994). Working memory and reading: A lifespan perspective. International Journal of Behavioural Development 17, 109124.Google Scholar
Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33, 475487.Google Scholar
Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science 283, 16571661.Google Scholar
Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences 95, 876882.Google Scholar
Stanford, L. D., & Hynd, G. W. (1994). Congruence of behavioral symptomatology in children with ADD/H, ADD/WO, and learning disabilities. Journal of Learning Disabilities 27, 243253.Google Scholar
Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven Press.
Swanson, J. M., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., Murias, M., Moriarty, J., Barr, C., Smith, M., & Posner, M. (2000). Dopamine genes and ADHD. Neuroscience and Biobehavioral Reviews 24.Google Scholar
Sykes, D. H., Douglas, V. I., Weiss, G., & Minde, K. (1971). Attention in hyperactive children and the effect of methylphenidate (Ritalin). Journal of Child Psychology and Psychiatry 12, 129139.Google Scholar
Szatmari, P. (1992). The epidemiology of attention-deficit hyperactivity disorders. In G. Weiss (Ed.), Child and adolescent psychiatry clinics of North America: Attention deficit disorder (pp. 361372). Philadelphia, PA: Saunders.
Teicher, M. H., Ito, Y., Glod, C. A., & Barber, N. I. (1996). Objective measurement of hyperactivity and attentional problems in ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 35, 334342.Google Scholar
Tercyak, K. P., Lerman, C., & Audrain, J. (2002). Association of attention-deficit hyperactivity disorder symptoms with levels of cigarette smoking in a community sample of adolescents. Journal of the American Academy of Child and Adolescent Psychiatry 41, 799805.Google Scholar
Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America 95, 1449414499.Google Scholar
van der Meere, J., & Sergeant, J. (1988). Acquisition of attentional skill in pervasively hyperactive children. Journal of Child Psychology and Psychiatry 29, 301310.Google Scholar
van der Meere, J., Wekking, E. E., Sergeant, J. (1991). Sustained attention and pervasive hyperactivity. Journal of Child Psychology and Psychiatry, and Allied Disciplines 2, 275284.Google Scholar
van Honk, J., Schutter, D. J., Putman, P., de Haan, E. H., & d'Alfonso, A. A. (2003). Reductions in phenomenological, physiological and attentional indices of depressive mood after 2 Hz rTMS over the right parietal cortex in healthy human subjects. Psychiatry Research 120, 95101.Google Scholar
Volkow, N. D., Gur, R. C., Wang, G.-J., Fowler, J. S., Moberg, P. J., Ding, Y.-S., Hitzemann, R., Smith, G., & Logan, J. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry 155, 344349.Google Scholar
Waldman, I. D., Rowe, D. C., Abramowitz, A., Kozel, S. T., Mohr, J. H., Sherman, S. L., Cleveland, H. H., Sanders, M. L., Gard, J. M., & Stever, C. (1998). Association and linkage of the dopamine transporter gene and attention deficit hyperactivity disorder in children: Owing to diagnostic subtype and severity. American Journal of Human Genetics 63, 17671776.Google Scholar
Warner–Rogers, J., Taylor, A., Taylor, E., & Sandberg, S. (2000). Inattentive behaviour in childhood: Epidemiology and implications for development. Journal of Learning Disabilities 33, 520536.Google Scholar
Weiler, M. D., Holmes–Bernstein, J., Bellinger, D. C., & Waber, D. P. (2000). Processing speed in children with attention deficit/hyperactivity disorder, inattentive type. Child Neuropsychology 6, 218234.Google Scholar
Weiss, G., & Hechtman, L. (1979). The hyperactive child syndrome. Science 205, 13481354.Google Scholar
Weiss, M., Worling, D., & Wasdell, M. (2003). A chart review study of the inattentive and combined types of ADHD. Journal of Attention Disorders 7, 19.Google Scholar
Welsh, M. C., & Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology 4, 199230.Google Scholar
Westerberg, H., Hirvikoski, T., Forssberg, H., & Klingberg, T. (2004). Brief report-visuo-spatial working memory span: A sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychology 10, 155161.Google Scholar
Whalen, C., Jamner, L. D., Henker, B., Gehricke, J. G., & King, P. S. (2003). Is there a link between adolescent cigarette smoking and pharmacotherapy for ADHD? Psychology of Addictive Behaviors 17, 332335.Google Scholar
Willcutt, E. G., & Pennington, B. F. (2000). Comorbidity of reading disability and attention-deficit/hyperactivity disorder: Differences by gender and subtype. Journal of Learning Disabilities 33, 179191.Google Scholar
Wilson, B. A., Evans, J. J., Emslie, H., Alderman, N., & Burgess, P. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation 8, 213228.Google Scholar
Wilson, J. T. L., Scott, J. H., & Power, K. G. (1987). Developmental differences in the span of visual memory for pattern. British Journal of Developmental Psychology 5, 249255.Google Scholar
Zametkin, A., Liebenauer, L. L., Fitzgerald, G. A., King, A., Minkunas, D., Herscovitch, P., Yamada, E., & Cohen, R. (1993). Brain metabolism in teenagers with attention deficit hyperactivity disorder. Archives of General Psychiatry 50, 333340.Google Scholar
Zentall, S. S., & Smith, Y. S. (1993). Mathematical performance and behavior of children with hyperactivity with and without coexisting aggression. Behavior Research and Therapy.Google Scholar