Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T01:02:00.333Z Has data issue: false hasContentIssue false

Blunted feedback processing during risky decision making in adolescents with a parental history of substance use disorders

Published online by Cambridge University Press:  08 November 2013

Anja S. Euser*
Affiliation:
Erasmus University Rotterdam Erasmus Medical Center Rotterdam
Kirstin Greaves-Lord
Affiliation:
Erasmus Medical Center Rotterdam
Michael J. Crowley
Affiliation:
Yale School of Medicine
Brittany E. Evans
Affiliation:
Erasmus Medical Center Rotterdam University of Amsterdam
Anja C. Huizink
Affiliation:
University of Amsterdam Radboud University Research Institute for Addiction
Ingmar H. A. Franken
Affiliation:
Erasmus University Rotterdam
*
Address correspondence and reprint requests to: Anja S. Euser, Institute of Psychology, Erasmus University Rotterdam, Woudestein T12-59, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands; E-mail: euser@fsw.eur.nl.

Abstract

Risky decision making, a hallmark phenotype of substance use disorders (SUD), is thought to be associated with deficient feedback processing. Whether these aberrations are present prior to SUD onset or reflect merely a consequence of chronic substance use on the brain remains unclear. The present study investigated whether blunted feedback processing during risky decision making reflects a biological predisposition to SUD. We assessed event-related potentials elicited by positive and negative feedback during performance of a modified version of the Balloon Analogue Risk Task (BART) among high-risk adolescents with a parental history of SUD (HR; n = 61) and normal-risk controls (NR; n = 91). HR males made significantly more risky and faster decisions during the BART than did NR controls. Moreover, HR adolescents showed significantly reduced P300 amplitudes in response to both positive and negative feedback as compared to NR controls. These differences were not secondary to prolonged substance use exposure. Results are discussed in terms of feedback-specific processes. Reduced P300 amplitudes in the BART may reflect poor processing of feedback at the level of overall salience, which may keep people from effectively predicting the probability of future gains and losses. Though conclusions are tentative, blunted feedback processing during risky decision making may represent a promising endophenotypic vulnerability marker for SUD.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. (1991). Manual for the Youth Self-Report and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Acheson, A., Robinson, J. L., Glahn, D. C., Lovallo, W. R., & Fox, P. T. (2009). Differential activation of the anterior cingulate cortex and caudate nucleus during a gambling simulation in persons with a family history of alcoholism: Studies from the Oklahoma Family Health Patterns Project. Drug and Alcohol Dependence, 100, 1723.Google Scholar
Andrews, M. M., Meda, S. A., Thomas, A. D., Potenza, M. N., Krystal, J. H., Worhunsky, P., et al. (2010). Individual's family history positive for alcoholism show functional magnetic resonance imaging differences in reward sensitivity that are related to impulsivity factors. Biological Psychiatry, 69, 675683.CrossRefGoogle ScholarPubMed
Anokhin, A. P., Golosheykin, S., Grant, J., & Heath, A. C. (2009). Heritability of risk-taking in adolescence: A longitudinal twin study. Twin Research and Human Genetics, 12, 366371.CrossRefGoogle ScholarPubMed
Anokhin, A. P., Vedeniapin, A. B., Sirevaag, E. J., Bauer, L. O., O'Connor, S. J., Kuperman, S., et al. (2000). The P300 brain potential is reduced in smokers. Psychopharmacology (Berlin), 149, 409413.Google Scholar
Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241248.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.Google Scholar
Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40, 16751689.Google Scholar
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376389.Google Scholar
Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 16901705.CrossRefGoogle ScholarPubMed
Bechara, A., & Martin, E. M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152162.CrossRefGoogle ScholarPubMed
Bickel, W. K., & Marsch, L. A. (2001). Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction, 96, 7386.Google Scholar
Bierut, L. J., Dinwiddie, S. H., Begleiter, H., Crowe, R. R., Hesselbrock, V., Nurnberger, J. I. Jr., et al. (1998). Familial transmission of substance dependence: Alcohol, marijuana, cocaine, and habitual smoking: A report from the Collaborative Study on the Genetics of Alcoholism. Archives of General Psychiatry, 55, 982988.Google Scholar
Cantrell, H., Finn, P. R., Rickert, M. E., & Lucas, J. (2008). Decision making in alcohol dependence: Insensitivity to future consequences and comorbid disinhibitory psychopathology. Alcoholism: Clinical and Experimental Research, 32, 13981407.CrossRefGoogle ScholarPubMed
Carlson, S. R., McLarnon, M. E., & Iacono, W. G. (2007). P300 amplitude, externalizing psychopathology, and earlier- versus later-onset substance-use disorder. Journal of Abnormal Psychology, 116, 565577.Google Scholar
Casey, B. J., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 11891201.Google ScholarPubMed
Cicchetti, D., & Curtis, W. J. (2007). Multilevel perspectives on pathways to resilient functioning. Development and Psychopathology, 19, 627629.Google Scholar
Clark, D. B., Moss, H. B., Kirisci, L., Mezzich, A. C., Miles, R., & Ott, P. (1997). Psychopathology in preadolescent sons of fathers with substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 495502.Google Scholar
Cloninger, C. R., Bohman, M., & Sigvardsson, S., (1981). Inheritance of alcohol abuse: Cross fostering analysis of adopted men. Archives of General Psychiatry, 38, 861868.Google Scholar
Crews, F., He, J., & Hodge, C. (2007). Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacology Biochemistry & Behavior, 86, 189199.CrossRefGoogle ScholarPubMed
Crowley, M. J., Wu, J., Crutcher, C., Bailey, C. A., Lejuez, C. W., & Mayes, L. C. (2009). Risk-taking and the feedback negativity response to loss among at-risk adolescents. Developmental Neuroscience, 31, 137148.Google Scholar
Demiralp, T., Ademoglu, A., Schürmann, M., Basar-Eroglu, C., & Basar, E. (1999). Detection of P300 waves in single trials by the wavelet transform (WT). Brain and Language, 66, 108128.Google Scholar
Donchin, E. (1981). Presidential address, 1980. Surprise! . . . Surprise? Psychophysiology, 18, 493513.Google Scholar
Donkers, F. C., Nieuwenhuis, S., & van Boxtel, G. J. (2005). Mediofrontal negativities in the absence of responding. Cognitive Brain Research, 25, 777787.Google Scholar
Ergen, M., Marbach, S., Brand, A., Basar-Eroglu, C., & Demiralp, T. (2008). P3 and delta band responses in visual oddball paradigm in schizophrenia. Neuroscience Letters, 440, 304308.Google Scholar
Ernst, M., Grant, S. J., London, E. D., Contoreggi, C. S., Kimes, A. S., & Spurgeon, L. (2003). Decision making in adolescents with behavior disorders and adults with substance abuse. American Journal of Psychiatry, 160, 3340.Google Scholar
Ersche, K. D., Roiser, J. P., Clark, L., London, M., Robbins, T. W., & Sahakian, B. J. (2005). Punishment induces risky decision-making in methadone-maintained opiate users but not in heroin users or healthy volunteers. Neuropsychopharmacology, 30, 21152124.Google Scholar
Euser, A. S., Arends, L. R., Evans, B. E., Greaves-Lord, K., Huizink, A. C., & Franken, I. H. A. (in press). The P300 event-related brain potential as a neurobiological endophenotype for SUD: A meta-analytic investigation. Neuroscience & Biobehavioral Reviews.Google Scholar
Euser, A. S., Van Meel, C. S., Snelleman, M., & Franken, I. H. A. (2011). Acute effects of alcohol on feedback processing and outcome evaluation: An ERP study. Psychopharmacology, 217, 111125.CrossRefGoogle ScholarPubMed
Evans, B. E., Greaves-Lord, K., Euser, A. S., Franken, I. H. A., & Huizink, A. C. (2012). The relation between hypothalamic–pituitary–adrenal (HPA) axis activity and age of onset of alcohol use. Addiction, 107, 312322.Google Scholar
Eysenck, S. B. G., Pearson, P. R., Easting, G., & Allsopp, J. F. (1985). Age norms for impulsiveness, venturesomeness and empathy in adults. Personality and Individual Differences, 6, 613619.Google Scholar
Fein, G., & Chang, M. (2008). Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment-naive alcoholics. Drug and Alcohol Dependence, 92, 141148.Google Scholar
Fein, G., Klein, L., & Finn, P. (2004). Impairment on a simulated gambling task in long-term abstinent alcoholics. Alcohol: Clinical and Experimental Research, 28, 14871491.Google Scholar
Fishbein, D. H., Eldreth, D. L., Hyde, C., Matochik, J. A., London, E. D., Contoreggi, C., et al. (2005). Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Cognitive Brain Research, 23, 119136.Google Scholar
Fisher, P., Parra, M. T., Wicks, J., Reyland, S., & Shaffer, D. (1992). Diagnostic Interview Schedule for Children (NIMH DISC, version 2.3). New York: New York State Psychiatric Institute, Division of Child and Adolescent Psychiatry.Google Scholar
Frederick, J. A., & Iacono, W. G. (2006). Beyond the DSM: Defining endophenotypes for genetic studies of substance abuse. Current Psychiatry Reports, 8, 144150.CrossRefGoogle ScholarPubMed
Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 22792282.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.Google Scholar
Gottesman, I. I., & Hanson, D. R. (2005). Human development: Biological and genetic processes. Annual Review of Psychology, 56, 263286.Google Scholar
Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 11801187.CrossRefGoogle Scholar
Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468484.Google Scholar
Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005). Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology, 42, 161170.Google Scholar
Herting, M. M., Schwartz, D., Mitchell, S. H., & Nagel, B. J. (2010). Delay discounting behavior and white matter microstructure abnormalities in youth with a family history of alcoholism. Alcohol: Clinical and Experimental Research, 34, 15901602.Google Scholar
Hill, S. Y., Shen, S., Locke, J., Steinhauer, S. R., Konicky, C., Lowers, L., et al. (1999). Developmental delay in P300 production in children at high risk for developing alcohol-related disorders. Biological Psychiatry, 46, 970981.Google Scholar
Hill, S. Y., Steinhauer, S., Park, J., & Zubin, J. (1990). Event-related potential characteristics in children of alcoholics from high-density families. Alcohol: Clinical and Experimental Research, 14, 616.Google Scholar
Hoyle, R. H., Stephenson, M. T., Palmgreen, P., Lorch, E. P., & Donohew, R. L. (2002). Reliability and validity of a brief measure of sensation seeking. Personality and Individual Differences, 32, 401414.CrossRefGoogle Scholar
Huizink, A. C., Greaves-Lord, K., Evans, B. E., Euser, A. S., van der Ende, J., Verhulst, F. C., et al. (in press). Youth in the Netherlands Study (JOiN): Study design. BMC Public Health.Google Scholar
Iacono, W. G., Carlson, S. R., & Malone, S. M. (2000). Identifying a multivariate endophenotype for substance use disorders using psychophysiological measures. International Journal of Psychophysiology, 38, 8196.Google Scholar
Iacono, W. G., Carlson, S. R., Taylor, J., Elkins, I. J., & McGue, M. (1999). Behavioral disinhibition and the development of substance-use disorders: Findings from the Minnesota Twin Family Study. Development and Psychopathology, 11, 869900.Google Scholar
Iacono, W. G., Malone, S. M., & McGue, M. (2003). Substance use disorders, externalizing psychopathology, and P300 event-related potential amplitude. International Journal of Psychophysiology, 48, 147178.Google Scholar
Iacono, W. G., Malone, S. M., & McGue, M. (2008). Behavioral disinhibition and the development of early-onset addiction: Common and specific influences. Annual Review of Clinical Psychology, 4, 325348.Google Scholar
Johnson, R. Jr. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23, 367384.Google Scholar
Kamarajan, C., Rangaswamy, M., Tang, Y., Chorlian, D. B., Pandey, A. K., Roopesh, B. N., et al. (2010). Dysfunctional reward processing in male alcoholics: An ERP study during a gambling task. Journal of Psychiatric Research, 44, 576590.Google Scholar
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.Google Scholar
Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., et al. (2002). Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). Journal of Experimental Psychology: Applied, 8, 7584.Google Scholar
Lijffijt, M., Kenemans, J. L., & Caci, H. (2005). Validation of the Dutch translation of the I7 questionnaire. Personality and Individual Differences, 38, 11231133.Google Scholar
Lovallo, W. R., Yechiam, E., Sorocco, K. H., Vincent, A. S., & Collins, F. L. (2006). Working memory and decision-making biases in young adults with a family history of alcoholism: Studies from the Oklahoma family health patterns project. Alcohol: Clinical and Experimental Research, 30, 763773.Google Scholar
Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14, 4753.Google Scholar
Masten, A. S. (2004). Regulatory processes, risk, and resilience in adolescent development. Annals of the New York Academy of Science, 1021, 310319.Google Scholar
Masten, A. S., Faden, V. B., Zucker, R. A., & Spear, L. P. (2008). Underage drinking: A developmental framework. Pediatrics, 121, S235S251.Google Scholar
Mazas, C. A., Finn, P. R., & Steinmetz, J. E. (2000). Decision-making biases, antisocial personality, and early-onset alcoholism. Alcohol: Clinical and Experimental Research, 24, 10361040.Google Scholar
Miranda, R. Jr., MacKillop, J., Meyerson, L. A., Justus, A., & Lovallo, W. R. (2009). Influence of antisocial and psychopathic traits on decision-making biases in alcoholics. Alcohol: Clinical and Experimental Research, 33, 817825.Google Scholar
Monterosso, J., Ehrman, R., Napier, K. L., O'Brien, C. P., & Childress, A. R. (2001). Three decision-making tasks in cocaine-dependent patients: Do they measure the same construct? Addiction, 96, 18251837.Google Scholar
Nieuwenhuis, S., Slagter, H. A., von Geusau, N. J., Heslenfeld, D. J., & Holroyd, C. B. (2005). Knowing good from bad: Differential activation of human cortical areas by positive and negative outcomes. European Journal of Neuroscience, 21, 31613168.Google Scholar
Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004). Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex, 14, 741747.Google Scholar
O'Connor, S., Hesselbrock, V., Tasman, A., & DePalma, N. (1987). P3 amplitudes in two distinct tasks are decreased in young men with a history of paternal alcoholism. Alcohol, 4, 323330.Google Scholar
Patrick, C. J., Bernat, E. M., Malone, S. M., Iacono, W. G., Krueger, R. F., & McGue, M. (2006). P300 amplitude as an indicator of externalizing in adolescent males. Psychophysiology, 43, 8492.Google Scholar
Petry, N. M., Kirby, K. N., & Kranzler, H. R. (2002). Effects of gender and family history of alcohol dependence on a behavioral task of impulsivity in healthy subjects. Journal of Studies on Alcohol, 63, 8390.Google Scholar
Pihl, R. O., Peterson, J., & Finn, P. (1990). Inherited predisposition to alcoholism: Characteristics of sons of male alcoholics. Journal of Abnormal Psychology, 99, 291301.Google Scholar
Pleskac, T. J., Wallsten, T. S., Wang, P., & Lejuez, C. W. (2008). Development of an automatic response mode to improve the clinical utility of sequential risk-taking tasks. Experimental and Clinical Psychopharmacology, 16, 555564.Google Scholar
Polich, J., & Criado, J. R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60, 172185.Google Scholar
Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41, 103146.Google Scholar
Polich, J., Pollock, V. E., & Bloom, F. E. (1994). Meta-analysis of P300 amplitude from males at risk for alcoholism. Psychological Bulletin, 115, 5573.Google Scholar
Pontifex, M. B., Hillman, C. H., & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46, 379387.Google Scholar
Porjesz, B., Begleiter, H., Bihari, B., & Kissin, B. (1987). Event-related brain potentials to high incentive stimuli in abstinent alcoholics. Alcohol, 4, 283287.Google Scholar
Ramsey, S. E., & Finn, P. R. (1997). P300 from men with a family history of alcoholism under different incentive conditions. Journal of Studies on Alcohol, 58, 606616.Google Scholar
Rhee, S. H., Hewitt, J. K., Young, S. E., Corley, R. P., Crowley, T. J., & Stallings, M. C. (2003). Genetic and environmental influences on substance initiation, use, and problem use in adolescents. Archives of General Psychiatry, 60, 12561264.Google Scholar
Robins, L. N., Wing, J., Wittchen, H.-U., Helzer, J. E., Babor, T. F., Burke, J., et al. (1989). The Composite International Diagnostic Interview: An epidemiologic instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Archives of General Psychiatry, 45, 10691077.Google Scholar
Rothman, K. J. (1990) No adjustments are needed for multiple comparisons. Epidemiology, 1, 4346.Google Scholar
Sato, A., Yasuda, A., Ohira, H., Miyawaki, K., Nishikawa, M., Kumano, H., et al. (2005). Effects of value and reward magnitude on feedback negativity and P300. NeuroReport, 16, 407411.Google Scholar
Shaffer, D., Fisher, P., Dulcan, M. K., Davies, M., Placentini, J., Schwab-Stone, M. E., et al. (1996). The NIMH Diagnostic Interview Schedule for Children (DISC 2.3): Description, acceptability, prevalence, and performance in the MECA study. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 865877.CrossRefGoogle ScholarPubMed
Shaffer, D., Restifo, K., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children version IV (NIHM DISC-IV): Description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 2838.Google Scholar
Sher, K. J., Walitzer, K. S., Wood, P. K., & Brent, E. E. (1991). Characteristics of children of alcoholics: Putative risk factors, substance use and abuse, and psychopathology. Journal of Abnormal Psychology, 100, 427448.Google Scholar
Silva, M. C., Benegal, V., Devi, M., & Mukundan, C. R. (2007). Cognitive deficits in children of alcoholics: At risk before the first sip! Indian Journal of Psychiatry, 49, 182188.Google Scholar
Steinberg, L., Dahl, R. E., Keating, D., Kupfer, D. J., Masten, A. S., & Pine, D. S. (2006). Psychopathology in adolescence: Integrating affective neuroscience with the study of context. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience. (2nd ed., pp. 710741). New York: Wiley.Google Scholar
Tarter, R. E., Kirisci, L., Habeych, M., Reynolds, M., & Vanyukov, M. (2004). Neurobehavior disinhibition in childhood predisposes boys to substance use disorder by young adulthood: Direct and mediated etiologic pathways. Drug and Alcohol Dependence, 73, 121132.Google Scholar
Tarter, R. E., Kirisci, L., Mezzich, A., Cornelius, J. R., Pajer, K., Vanyukov, M., et al. (2003). Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. American Journal of Psychiatry, 160, 10781085.Google Scholar
Tick, N. T., van der Ende, J., & Verhulst, F. C. (2007). Twenty-year trends in emotional and behavioral problems in Dutch children in a changing society. Acta Psychiatrica Scandinavia, 116, 473482.Google Scholar
Uhl, G. R. (2004). Molecular genetic underpinnings of human substance abuse vulnerability: Likely contributions to understanding addiction as a mnemonic process. Neuropharmacology, 47, 140147.Google Scholar
van Beijsterveldt, C. E., & van Baal, G. C. (2002). Twin and family studies of the human electroencephalogram: A review and a meta-analysis. Biological Psychology, 61, 111138.Google Scholar
Verdejo-García, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience & Biobehavioral Reviews, 32, 777810.Google Scholar
Verhulst, F. C., Van der Ende, J., Ferdinand, R. F., & Kasius, M. C. (1997). The prevalence of DSM-III-R diagnoses in a national sample of Dutch adolescents. Archives of General Psychiatry, 54, 329336.Google Scholar
Verhulst, F. C., Van der Ende, J., & Koot, H. M. (1997). Handleiding voor de Youth Self-Report (YSR). [Guide for the Youth Self-Report]. Rotterdam: Erasmus University, Department of Child and Adolescent Psychiatry.Google Scholar
Wu, Y., & Zhou, X. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114122.Google Scholar
Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24, 62586264.Google Scholar
Young, S. E., Rhee, S. H., Stallings, M. C., Corley, R. P., & Hewitt, J. K. (2006). Genetic and environmental vulnerabilities underlying adolescent substance use and problem use: General or specific? Behavior Genetics, 36, 603615.Google Scholar
Zhou, Z., Yu, R., & Zhou, X. (2010). To do or not to do? Action enlarges the FRN and P300 effects in outcome evaluation. Neuropsychologia, 48, 36063613.Google Scholar