Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:07:10.493Z Has data issue: true hasContentIssue false

The changing impact of genes and environment on brain development during childhood and adolescence: Initial findings from a neuroimaging study of pediatric twins

Published online by Cambridge University Press:  07 October 2008

Rhoshel K. Lenroot
Affiliation:
National Institutes of Mental Health
Jay N. Giedd*
Affiliation:
National Institutes of Mental Health
*
Address correspondence and reprint requests to: Jay N. Giedd, Child Psychiatry Branch, Brain Imaging Unit, National Institutes of Mental Health, 10 Center Drive, MSC 1600, Building 10, Room 4C110, Bethesda, MD 20892-1600; E-mail: jg@nih.gov.

Abstract

Human brain development is created through continuing complex interactions of genetic and environmental influences. The challenge of linking specific genetic or environmental risk factors to typical or atypical behaviors has led to interest in using brain structural features as an intermediate phenotype. Twin studies in adults have found that many aspects of brain anatomy are highly heritable, demonstrating that genetic factors provide a significant contribution to variation in brain structures. Less is known about the relative impact of genes and environment while the brain is actively developing. We summarize results from the ongoing National Institute of Mental Health child and adolescent twin study that suggest that heritability of different brain areas changes over the course of development in a regionally specific fashion. Areas associated with more complex reasoning abilities become increasingly heritable with maturation. The potential mechanisms by which gene–environment interactions may affect heritability values during development is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the Intramural Research Program of the NIH, National Institutes of Mental Health.

References

Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9, 341355.CrossRefGoogle ScholarPubMed
Agartz, I., Sedvall, G. C., Terenius, L., Kulle, B., Frigessi, A., Hall, H., et al. (2006). BDNF gene variants and brain morphology in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B, 513523.CrossRefGoogle ScholarPubMed
Andersen, S. L. (2003). Trajectories of brain development: Point of vulnerability or window of opportunity? Neuroscience & Biobehavioral Reviews, 27, 318.CrossRefGoogle ScholarPubMed
Baare, W. F., Hulshoff Pol, H. E., Boomsma, D. I., Posthuma, D., de Geus, E. J., Schnack, H. G., et al. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11, 816824.CrossRefGoogle ScholarPubMed
Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10, 423433.CrossRefGoogle Scholar
Boos, H. B., Aleman, A., Cahn, W., Pol, H. H., & Kahn, R. S. (2007). Brain volumes in relatives of patients with schizophrenia: A meta-analysis. Archives of General Psychiatry, 64, 297304.CrossRefGoogle ScholarPubMed
Bruder, C. E., Piotrowski, A., Gijsbers, A. A., Andersson, R., Erickson, S., de Stahl, T. D., et al. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics, 82, 763771.CrossRefGoogle ScholarPubMed
Cadoret, R. J., Cain, C. A., & Crowe, R. R. (1983). Evidence for gene–environment interaction in the development of adolescent antisocial behavior. Behavioral Genetics, 13, 301310.CrossRefGoogle ScholarPubMed
Cannon, T. D., Thompson, P. M., van Erp, T. G., Toga, A. W., Poutanen, V. P., Huttunen, M., et al. (2002). Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 32283233.CrossRefGoogle ScholarPubMed
Cannon, T. D., van Erp, T. G., Bearden, C. E., Loewy, R., Thompson, P., Toga, A. W., et al. (2003). Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophrenia Bulletin, 29, 653669.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Curtis, W. J., & Cicchetti, D. (2003). Moving research on resilience into the 21st century: Theoretical and methodological considerations in examining the biological contributors to resilience. Development and Psychopathology, 15, 773810.CrossRefGoogle ScholarPubMed
Dalton, K. M., Nacewicz, B. M., Alexander, A. L., & Davidson, R. J. (2007). Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biological Psychiatry, 61, 512520.CrossRefGoogle ScholarPubMed
Derks, E. M., Dolan, C. V., & Boomsma, D. I. (2006). A test of the equal environment assumption (EEA) in multivariate twin studies. Twin Research and Human Genetics, 9, 403411.CrossRefGoogle ScholarPubMed
Durston, S., Hulshoff Pol, H. E., Schnack, H. G., Buitelaar, J. K., Steenhuis, M. P., Minderaa, R. B., et al. (2004). Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 332340.CrossRefGoogle ScholarPubMed
Dykens, E. M., & Hodapp, R. M. (2007). Three steps toward improving the measurement of behavior in behavioral phenotype research. Child and Adolescent Psychiatric Clinics of North America, 16, 617630.CrossRefGoogle ScholarPubMed
Evans, D. M., Gillespie, N. A., & Martin, N. G. (2002). Biometrical genetics. Biological Psychology, 61, 3351.CrossRefGoogle ScholarPubMed
Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain's default network. Proceedings of the National Academy of Sciences of the United States of America, 105, 40284032.CrossRefGoogle ScholarPubMed
Filippi, M., van Waesberghe, J. H., Horsfield, M. A., Bressi, S., Gasperini, C., Yousry, T. A., et al. (1997). Interscanner variation in brain MRI lesion load measurements in MS: Implications for clinical trials. Neurology, 49, 371377.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399433.CrossRefGoogle Scholar
Flatt, T. (2005). The evolutionary genetics of canalization. Quarterly Review of Biology, 80, 287316.CrossRefGoogle ScholarPubMed
Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 1060410609.CrossRefGoogle ScholarPubMed
Friston, K. (2005). Disconnection and cognitive dysmetria in schizophrenia. American Journal of Psychiatry, 162, 429432.CrossRefGoogle ScholarPubMed
Garlick, D. (2002). Understanding the nature of the general factor of intelligence: The role of individual differences in neural plasticity as an explanatory mechanism. Psychological Review, 109, 116136.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Glahn, D. C., Thompson, P. M., & Blangero, J. (2007). Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28, 488501.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Gogtay, N., Sporn, A., Clasen, L. S., Greenstein, D., Giedd, J. N., Lenane, M., et al. (2003). Structural brain MRI abnormalities in healthy siblings of patients with childhood-onset schizophrenia. American Journal of Psychiatry, 160, 569571.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.CrossRefGoogle ScholarPubMed
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539559.CrossRefGoogle ScholarPubMed
Grove, E. A., & Fukuchi-Shimogori, T. (2003). Generating the cerebral cortical area map. Annual Reviews in Neuroscience, 26, 355380.CrossRefGoogle ScholarPubMed
Harden, K. P., Turkheimer, E., & Loehlin, J. C. (2007). Genotype by environment interaction in adolescents' cognitive aptitude. Behavioral Genetics, 37, 273283.CrossRefGoogle ScholarPubMed
Hessl, D., Dyer-Friedman, J., Glaser, B., Wisbeck, J., Barajas, R. G., Taylor, A., et al. (2001). The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics, 108, E88.CrossRefGoogle ScholarPubMed
Ho, B. C., Milev, P., O'Leary, D. S., Librant, A., Andreasen, N. C., & Wassink, T. H. (2006). Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Archives of General Psychiatry, 63, 731740.CrossRefGoogle ScholarPubMed
Hoffbuhr, K. C., Moses, L. M., Jerdonek, M. A., Naidu, S., & Hoffman, E. P. (2002). Associations between MeCP2 mutations, X-chromosome inactivation, and phenotype. Mental Retardation and Developmental Disabilities Research Reviews, 8, 99105.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1998). Early exploration of the visual cortex. Neuron, 20, 401412.CrossRefGoogle ScholarPubMed
Hulshoff Pol, H. E., Brans, R. G., van Haren, N. E., Schnack, H. G., Langen, M., Baare, W. F., et al. (2004). Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biological Psychiatry, 55, 126130.CrossRefGoogle ScholarPubMed
Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C., Baare, W. F., van Oel, C., et al. (2006). Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 26, 1023510242.CrossRefGoogle ScholarPubMed
Hur, Y. M., & Shin, J. S. (2008). Effects of chorion type on genetic and environmental influences on height, weight, and body mass index in South Korean young twins. Twin Research and Human Genetics, 11, 6369.CrossRefGoogle ScholarPubMed
Hyman, S. E. (2007). Can neuroscience be integrated into the DSM-V? Nature Reviews Neuroscience, 8, 725732.CrossRefGoogle ScholarPubMed
Jacobs, N., Van Gestel, S., Derom, C., Thiery, E., Vernon, P., Derom, R., et al. (2001). Heritability estimates of intelligence in twins: Effect of chorion type. Behavioral Genetics, 31, 209217.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Crow, T. J., Frith, C. D., Husband, J., & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet, 2, 924926.CrossRefGoogle ScholarPubMed
Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., et al. (2006). Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage, 30, 436443.CrossRefGoogle ScholarPubMed
Kabani, N., Le Goualher, G., MacDonald, D., & Evans, A. C. (2001). Measurement of cortical thickness using an automated 3-D algorithm: A validation study. NeuroImage, 13, 375380.CrossRefGoogle ScholarPubMed
Kates, W. R., Burnette, C. P., Eliez, S., Strunge, L. A., Kaplan, D., Landa, R., et al. (2004). Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. American Journal of Psychiatry, 161, 539546.CrossRefGoogle ScholarPubMed
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Sciences of the United States of America, 101, 1731617321.CrossRefGoogle ScholarPubMed
Kendler, K. S., & Baker, J. H. (2007). Genetic influences on measures of the environment: A systematic review. Psychological Medicine, 37, 615626.CrossRefGoogle ScholarPubMed
Kendler, K. S., & Gardner, C. O. Jr. (1998). Twin studies of adult psychiatric and substance dependence disorders: Are they biased by differences in the environmental experiences of monozygotic and dizygotic twins in childhood and adolescence? Psychological Medicine, 28, 625633.CrossRefGoogle ScholarPubMed
Kendler, K. S., Kessler, R. C., Walters, E. E., MacLean, C., Neale, M. C., Heath, A. C., et al. (1995). Stressful life events, genetic liability, and onset of an episode of major depression in women. American Journal of Psychiatry, 152, 833842.Google ScholarPubMed
Kendler, K. S., Kuhn, J. W., Vittum, J., Prescott, C. A., & Riley, B. (2005). The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: A replication. Archives of General Psychiatry, 62, 529535.CrossRefGoogle Scholar
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 10651073.CrossRefGoogle ScholarPubMed
Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., et al. (2007). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping.Google Scholar
Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage, 24, 163173.CrossRefGoogle Scholar
Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R. K., Giedd, J., et al. (2006). Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage, 31, 9931003.CrossRefGoogle ScholarPubMed
Loesch, D. Z., Huggins, R. M., Bui, Q. M., Taylor, A. K., Pratt, C., Epstein, J., et al. (2003). Effect of fragile X status categories and FMRP deficits on cognitive profiles estimated by robust pedigree analysis. American Journal of Medical Genetics. Part A, 122A, 1323.CrossRefGoogle ScholarPubMed
Loos, R. J., Beunen, G., Fagard, R., Derom, C., & Vlietinck, R. (2001). The influence of zygosity and chorion type on fat distribution in young adult twins consequences for twin studies. Twin Research, 4, 356364.CrossRefGoogle ScholarPubMed
Machin, G. A. (1996). Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. American Journal of Medical Genetics, 61, 216228.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
McDonald, C., Dineen, B., & Hallahan, B. (2008). Meta-analysis of brain volumes in unaffected first-degree relatives of patients with schizophrenia overemphasizes hippocampal deficits. Archives of General Psychiatry, 65, 603605.CrossRefGoogle ScholarPubMed
Meda, S. A., Giuliani, N. R., Calhoun, V. D., Jagannathan, K., Schretlen, D. J., Pulver, A., et al. (2008). A large scale (N = 400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophrenia Research, 101, 95105.CrossRefGoogle ScholarPubMed
Menzies, L., Achard, S., Chamberlain, S. R., Fineberg, N., Chen, C. H., del Campo, N., et al. (2007). Neurocognitive endophenotypes of obsessive–compulsive disorder. Brain, 130, 32233236.CrossRefGoogle ScholarPubMed
Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64, 945950.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology: Concepts, research strategies, and implications for research, intervention, and public understanding of genetics. Perspectives on Psychological Science, 1, 527.CrossRefGoogle ScholarPubMed
Moretti, P., & Zoghbi, H. Y. (2006). MeCP2 dysfunction in Rett syndrome and related disorders. Current Opinion in Genetics and Development, 16, 276281.CrossRefGoogle ScholarPubMed
Owen, M. J., Craddock, N., & O'Donovan, M. C. (2005). Schizophrenia: Genes at last? Trends in Genetics, 21, 518525.CrossRefGoogle ScholarPubMed
Pearlson, G. D., & Calhoun, V. (2007). Structural and functional magnetic resonance imaging in psychiatric disorders. Canadian Journal of Psychiatry, 52, 158166.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Sullivan, E. V., & Carmelli, D. (2004). Morphological changes in aging brain structures are differentially affected by time-linked environmental influences despite strong genetic stability. Neurobiology of Aging, 25, 175183.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype–environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84, 309322.CrossRefGoogle ScholarPubMed
Plomin, R., Fulker, D., Corley, R., & DeFries, J. (1997). Nature, nurture, and cognitive development from 1 to 16 years: A parent–offspring adoption study. Psychological Science, 8, 442447.CrossRefGoogle Scholar
Plomin, R., Willerman, L., & Loehlin, J. C. (1976). Resemblance in appearance and the equal environments assumption in twin studies of personality traits. Behavioral Genetics, 6, 4352.CrossRefGoogle ScholarPubMed
Porteous, D. J., Thomson, P., Brandon, N. J., & Millar, J. K. (2006). The genetics and biology of DISC1—An emerging role in psychosis and cognition. Biological Psychiatry, 60, 123131.CrossRefGoogle ScholarPubMed
Posthuma, D., & Boomsma, D. I. (2000). A note on the statistical power in extended twin designs. Behavioral Genetics, 30, 147158.CrossRefGoogle ScholarPubMed
Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5, 8384.CrossRefGoogle ScholarPubMed
Posthuma, D., De Geus, E. J., Neale, M. C., Hulshoff Pol, H. E., Baare, W. E. C., Kahn, R. S., et al. (2000). Multivariate genetic analysis of brain structure in an extended twin design. Behavioral Genetics, 30, 311319.CrossRefGoogle Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170176.CrossRefGoogle ScholarPubMed
Rich, B. A., Fromm, S. J., Berghorst, L. H., Dickstein, D. P., Brotman, M. A., Pine, D. S., et al. (2008). Neural connectivity in children with bipolar disorder: Impairment in the face emotion processing circuit. Journal of Child Psychology and Psychiatry, 49, 8896.CrossRefGoogle ScholarPubMed
Rogers, J., Kochunov, P., Lancaster, J., Shelledy, W., Glahn, D., Blangero, J., et al. (2007). Heritability of brain volume, surface area and shape: An MRI study in an extended pedigree of baboons. Human Brain Mapping, 28, 576583.CrossRefGoogle Scholar
Rojas, D. C., Smith, J. A., Benkers, T. L., Camou, S. L., Reite, M. L., & Rogers, S. J. (2004). Hippocampus and amygdala volumes in parents of children with autistic disorder. American Journal of Psychiatry, 161, 20382044.CrossRefGoogle ScholarPubMed
Rosa, M. G., & Tweedale, R. (2005). Brain maps, great and small: Lessons from comparative studies of primate visual cortical organization. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360, 665691.CrossRefGoogle ScholarPubMed
Samaco, R. C., Hogart, A., & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14, 483492.CrossRefGoogle ScholarPubMed
Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype greater than environment effects. Child Development, 54, 424435.Google ScholarPubMed
Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Chicago: University of Chicago Press.Google Scholar
Schmitt, J. E., Lenroot, R. K., Wallace, G. L., Ordaz, S., Taylor, K. N., Kabani, N., et al. (2008). Identification of genetically mediated cortical networks: A multivariate study of pediatric twins and siblings. Cerebral Cortex.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49, 152.CrossRefGoogle ScholarPubMed
Silberg, J., Rutter, M., Neale, M., & Eaves, L. (2001). Genetic moderation of environmental risk for depression and anxiety in adolescent girls. British Journal of Psychiatry, 179, 116121.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Rex, D., Kornsand, D., Tessner, K. D., Jernigan, T. L., et al. (2002). Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: Maturation in perisylvian cortices. Cerebral Cortex, 12, 1726.CrossRefGoogle ScholarPubMed
Stead, J. D., Neal, C., Meng, F., Wang, Y., Evans, S., Vazquez, D. M., et al. (2006). Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. Journal of Neuroscience, 26, 345353.CrossRefGoogle ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine, 322, 789794.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Hodgkinson, C. A., Robinson, D. G., Derosse, P., Bilder, R. M., Lencz, T., et al. (2007). DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biological Psychology.Google ScholarPubMed
Tanner, J. M. (1963). The regulation of human growth. Child Development, 34, 817847.Google ScholarPubMed
Thapar, A., Harold, G., Rice, F., Langley, K., & O'Donovan, M. (2007). The contribution of gene–environment interaction to psychopathology. Development and Psychopathology, 19, 9891004.CrossRefGoogle ScholarPubMed
Thatcher, R. W., North, D. M., & Biver, C. J. (2007). Development of cortical connections as measured by EEG coherence and phase delays. Human Brain Mapping, 28.Google Scholar
Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 12531258.CrossRefGoogle ScholarPubMed
Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., et al. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 1165011655.CrossRefGoogle ScholarPubMed
Tramo, M. J., Loftus, W. C., Stukel, T. A., Green, R. L., Weaver, J. B., & Gazzaniga, M. S. (1998). Brain size, head size, and intelligence quotient in monozygotic twins. Neurology, 50, 12461252.CrossRefGoogle ScholarPubMed
Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623628.CrossRefGoogle ScholarPubMed
van Baal, G. C., Boomsma, D. I., & de Geus, E. J. (2001). Longitudinal genetic analysis of EEG coherence in young twins. Behavioral Genetics, 31, 637651.CrossRefGoogle ScholarPubMed
van Beijsterveldt, C. E., Molenaar, P. C., de Geus, E. J., & Boomsma, D. I. (1998). Genetic and environmental influences on EEG coherence. Behavioral Genetics, 28, 443453.CrossRefGoogle ScholarPubMed
van Erp, T. G., Saleh, P. A., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., et al. (2004). Hippocampal volumes in schizophrenic twins. Archives of General Psychiatry, 61, 346353.CrossRefGoogle ScholarPubMed
van Haren, N. E., Bakker, S. C., & Kahn, R. S. (2008). Genes and structural brain imaging in schizophrenia. Current Opinion in Psychiatry, 21, 161167.CrossRefGoogle ScholarPubMed
van Haren, N. E., Picchioni, M. M., McDonald, C., Marshall, N., Davis, N., Ribchester, T., et al. (2004). A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. Biological Psychiatry, 56, 454461.CrossRefGoogle ScholarPubMed
Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563565.CrossRefGoogle Scholar
Wallace, G. L., Schmitt, J. E., Lenroot, R. K., Viding, E., Ordaz, S., Rosenthal, M. A., et al. (2006). A pediatric twin study of brain morphometry. Journal of Child Psychology and Psychiatry, 47, 987993.CrossRefGoogle ScholarPubMed
Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320, 539543.CrossRefGoogle ScholarPubMed
Warren, K. R., & Li, T. K. (2005). Genetic polymorphisms: Impact on the risk of fetal alcohol spectrum disorders. Birth Defects Research. Part A, Clinical and Molecular Teratology, 73, 195203.CrossRefGoogle ScholarPubMed
Webster, M. J., Herman, M. M., Kleinman, J. E., & Shannon Weickert, C. (2006). BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expression Patterns, 6, 941951.CrossRefGoogle ScholarPubMed
Weickert, C. S., Webster, M. J., Gondipalli, P., Rothmond, D., Fatula, R. J., Herman, M. M., et al. (2007). Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience, 144, 11091119.CrossRefGoogle ScholarPubMed
White, T., Andreasen, N. C., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12, 486493.CrossRefGoogle ScholarPubMed
Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R., & Bullmore, E. T. (2002). Genetic contributions to regional variability in human brain structure: Methods and preliminary results. NeuroImage, 17, 256271.CrossRefGoogle ScholarPubMed
Wright, S. (1968). Evolution and the genetics of populations. I. Genetic and biometric foundations. Chicago: University of Chicago Press.Google Scholar
Yehuda, R., Flory, J. D., Southwick, S., & Charney, D. S. (2006). Developing an agenda for translational studies of resilience and vulnerability following trauma exposure. Annals of the New York Academy of Sciences, 1071, 379396.CrossRefGoogle ScholarPubMed
Zelditch, M. L., Lundrigan, B. L., & Garland, T. Jr. (2004). Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evolution & Development, 6, 194206.CrossRefGoogle ScholarPubMed