Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T08:27:56.158Z Has data issue: false hasContentIssue false

Cortisol, cortisone, and BDNF in amniotic fluid in the second trimester of pregnancy: Effect of early life and current maternal stress and socioeconomic status

Published online by Cambridge University Press:  26 March 2018

Michael Deuschle*
Affiliation:
University of Heidelberg Central Institute of Mental Health
Ferdinand Hendlmeier
Affiliation:
University of Heidelberg Central Institute of Mental Health
Stephanie Witt
Affiliation:
University of Heidelberg Central Institute of Mental Health
Marcella Rietschel
Affiliation:
University of Heidelberg Central Institute of Mental Health
Maria Gilles
Affiliation:
University of Heidelberg Central Institute of Mental Health
Alberto Sánchez-Guijo
Affiliation:
Justus Liebig University
Lourdes Fañanas
Affiliation:
Universitat de Barcelona
Sabine Hentze
Affiliation:
Labor für Humangenetische Diagnostik
Stefan A. Wudy
Affiliation:
Justus Liebig University
Rainer Hellweg
Affiliation:
Charité Berlin
*
Address correspondence and reprint requests to: Michael Deuschle, Central Institute of Mental Health, Square J5, 68159 Mannheim, Germany; E-mail: michael.deuschle@zi-mannheim.de.

Abstract

The prenatal environment shapes the offspring's phenotype; moreover, transgenerational stress and stress during pregnancy may play a role. Brain-derived neurotrophic factor (BDNF) and glucocorticoids influence neurodevelopment during pregnancy, and there is evidence that BDNF in amniotic fluid is mainly of fetal origin, while the source of glucocorticoids is maternal. We tested the hypothesis that maternal early life stress, psychiatric diagnoses, anxiety, perceived stress, and socioeconomic status influence BDNF and glucocorticoid concentrations in amniotic fluid in the second trimester. We studied 79 pregnant women who underwent amniocentesis in the early second trimester and analyzed BDNF, cortisol, and cortisone concentrations in amniotic fluid. The endocrine data were related to maternal early life adversities (Childhood Trauma Questionaire), perceived stress (Perceived Stress Scale), anxiety, socioeconomic status (family income), and the presence of psychiatric diseases. We found BDNF in amniotic fluid to be positively related to maternal early adversity (Childhood Trauma Questionaire). Low family income (socioeconomic status) was related to high amniotic fluid glucocorticoid concentrations. Neither glucocorticoid concentrations nor hydroxy steroid dehydrogenase (HSD2) activity could be related to BDNF concentrations in amniotic fluid. Early maternal adverse events may be reflected in the fetal BDNF regulation, and it should be tested whether this relates to differences in neurodevelopment.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We gratefully acknowledge the support of Matthias Michel and Uwe Mackrott for their generous support in the recruitment of the study participants. We thank Silvia Saft for superb technical assistance. Thanks to the Spanish Ministry of Economy and Competitivity (ES-EUEpiBrain project, grant SAF2015-71526-REDT). Stefan A. Wudy and Rainer Hellweg contributed equally to this work

References

Alder, J., Fink, N, Bitzer, J., Hösli, I., & Holzgreve, W. (2007). Depression and anxiety during pregnancy: A risk factor for obstetric, fetal and neonatal outcome? A critical review of the iterature. Journal of Maternal, Fetal and Neonatal Medicine, 20, 189209. doi:10.1080/14767050701209560Google Scholar
Appleton, A. A., Armstrong, D. A., Lesseur, C., Lee, J., Padbury, J. F., Lester, B. M., & Marsit, C. J. (2013). Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLOS ONE, 8, e74691. doi:10.1371/journal.pone.0074691Google Scholar
Babenko, O., Kovalchuk, I., & Metz, G. A. (2015). Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neuroscience and Biobehavior Review, 48, 7091. doi:10.1016/j.neubiorev.2014.11.013Google Scholar
Baibazarova, E., van de Beek, C., Cohen-Kettenis, P. T., Buitelaar, J., Shelton, K., & van Goozen, S. H. (2013). Influence of prenatal maternal stress, maternal plasma cortisol and cortisol in the amniotic fluid on birth outcomes and child temperament at 3 months. Psychoneuroendocrinology, 38, 907915. doi:10.1016/j.psyneuen.2012.09.015Google Scholar
Beijers, R., Buitelaar, J. K., & de Weerth, C. (2014). Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: Beyond the HPA axis. European Child and Adolescent Psychiatry, 23, 943956. doi:10.1007/s00787-014-0566-3Google Scholar
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and valididation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse & Neglect, 27, 169190.Google Scholar
Berry, A., Panetta, P., Luoni, A., Bellisario, V., Capoccia, S., Riva, M. A., & Cirulli, F. (2015). Decreased BDNF expression and reduced social behavior in periadolescent rats following prenatal stress. Development and Psychobiology, 57, 365373. doi:10.1002/dev.21297Google Scholar
Boersma, G. J., Lee, R. S., Cordner, Z. A., Ewald, E. R., Purcell, R. H., Moghadam, A. A., & Tamashiro, K. L. (2013). Prenatal stress decreases BDNF expression and increases methylation of BDNF exon IV in rats. Epigenetics, 9, 437447. doi:10.4161/epi.27558Google Scholar
Bohacek, J., & Mansuy, I. M. (2015). Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nature Reviews Genetics, 16, 641652. doi:10.1038/nrg3964Google Scholar
Braig, S., Grabher, F., Ntomchukwu, C., Reister, F., Stalder, T., Kirschbaum, C., … Genuneit, J. (2016). The association of hair cortisol with self-reported chronic psychosocial stress and symptoms of anxiety and depression in women shortly after delivery. Paediatric and Perinatal Epidemiology, 30, 97104. doi:10.1111/ppe.12255Google Scholar
Braithwaite, E. C., Kundakovic, M., Ramchandani, P., Murphy, S. E., & Champagne, F. (2015). Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics, 10, 408417. doi:10.1080/15592294.2015.1039221Google Scholar
Buchmann, A. F., Hellweg, R., Rietschel, M., Treutlein, J., Witt, S. H., Zimmermann, U. S., … Deuschle, M. (2013). BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: A prospective study. European Neuropsychopharmacoly, 23, 902909. doi:10.1016/j.euroneuro.2012.09.003Google Scholar
Cattaneo, A., Bocchio-Chiavetto, L., Zanardini, R., Marchina, E., Bellotti, D., Milanesi, E., … Gennarelli, M. (2010). BDNF Val66Met polymorphism and protein levels in amniotic fluid. BMC Neuroscience, 11, 16. doi:10.1186/1471-2202-11-16Google Scholar
Cho, C. K., Shan, S. J., Winsor, E. J., & Diamandis, E. P. (2007). Proteomics analysis of human amniotic fluid. Molecular Cell Proteomics, 6, 14061415. doi:10.1074/mcp.M700090-MCP200Google Scholar
Chouthai, N. S., Sampers, J., Desai, N., & Smith, G. M., (2003). Changes in neurotrophin levels in umbilical cord blood from infants with different gestational ages and clinical conditions. Pediatric Research, 53, 965969. doi:10.1203/01.PDR.0000061588.39652.26Google Scholar
Conradt, E., Fei, M., Lagasse, L., Tronick, E., Guerin, D., Gorman, D., … Lester, B. M. (2015). Prenatal predictors of infant self-regulation: The contributions of placental DNA methylation of NR3C1 and neuroendocrine activity. Frontiers in Behavioral Neuroscience, 9, 130. doi:10.3389/fnbeh.2015.00130Google Scholar
Cottrell, E. C., Seckl, J. R., Holmes, M. C., & Wyrwoll, C. S. (2014). Foetal and placental 11β-HSD2: A hub for developmental programming. Acta Physiology (Oxford), 210, 288295. doi:10.1111/apha.12187Google Scholar
Cuffe, J. S. M., O'Sullivan, L., Simmons, D. G., Anderson, S. T., & Moritz, K. M. (2012). Maternal corticosterone exposure in the mouse has sex-specific effects on placental growth and mRNA expression. Endocrinology, 153, 55005511. doi:10.1210/en.2012-1479Google Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737746.Google Scholar
Del Cerro, M. C., Pérez-Laso, C., Ortega, E., Martín, J. L., Gómez, F., Pérez-Izquierdo, M. A., & Segovia, S. (2010). Maternal care counteracts behavioral effects of prenatal environmental stress in female rats. Behavioural Brain Research, 208, 593602. doi:10.1016/j.bbr.2010.01.003.Google Scholar
Dowd, J. B. (2007). Early childhood origins of the income/health gradient: The role of maternal health behaviors. Social Science Medicine, 65, 12021213. doi:10.1016/j.socscimed.2007.05.007Google Scholar
Engelhardt, B. (2003). Development of the blood-brain barrier. Cell Tissue Research, 314, 119129. doi:10.1007/s00441-003-0751-zGoogle Scholar
Fahlbusch, F. B., Heussner, K., Schmid, M., Schild, R., Ruebner, M., Huebner, H., … Rauh, M. (2015). Measurement of amniotic fluid steroids of midgestation via LC-MS/MS. Journal of Steroid Biochemistry and Molecular Biology, 152, 155160. doi:10.1016/j.jsbmb.2015.05.014Google Scholar
Fukami, E., Nakayama, A., Sasaki, J., Mimura, S., Mori, N., & Watanabe, K. (2000). Underexpression of neural cell adhesion molecule and neurotrophic factors in rat brain following thromboxane A2-induced intrauterine growth retardation. Early Human Development, 58, 101110.Google Scholar
Fumagalli, F., Bedogni, F., Perez, J., Racagni, G., & Riva, M. A. (2004). Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. European Journal of Neuroscience, 20, 13481354. doi:10.1111/j.1460-9568.2004.03592.xGoogle Scholar
Fumagalli, F., Molteni, R., Racagni, G., & Riva, M. A. (2007). Stress during development: Impact on neuroplasticity and relevance to psychopathology. Progress in Neurobiology, 81, 197217. doi:10.1016/j.pneurobio.2007.01.002Google Scholar
Gavin, A. R., Hill, K. G., Hawkins, J. D., & Maas, C. (2011). The role of maternal early life and later life risk factors on offspring low birth weight: Findings from a three-generational study. Journal of Adolescent Health, 49, 166171. doi:10.1016/j.jadohealth.2010.11.246Google Scholar
Ghaemmaghami, P., Dainese, S. M., La Marca, R., Zimmermann, R., & Ehlert, U. (2014). The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome. Development and Psychobiology, 56, 734747. doi:10.1002/dev.21142Google Scholar
Giesbrecht, G. F., Campbell, T., Letourneau, N., Kooistra, L., & Kaplan, B. (2012). Psychological distress and salivary cortisol covary within persons during pregnancy. Psychoneuroendocrinology, 37, 270279. doi:10.1016/j.psyneuen.2011.06.011Google Scholar
Gilmore, J. H., Jarskog, F. L., & Vadlamudi, S. (2003). Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat. Journal of Neuroimmunology, 138, 4955.Google Scholar
Glenn, M. J., Gibson, E. M., Kirby, E. D., Mellott, T. J., Blusztajn, J. K., & Williams, C. L. (2007). Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats. European Journal of Neuroscience, 25, 24732482.Google Scholar
Guo, H., Hellard, D. T., Huang, L., & Katz, D. M. (2005). Development of pontine noradrenergic A5 neurons requires brain-derived neurotrophic factor. European Journal of Neuroscience, 21, 20192023.Google Scholar
Gustafsson, H., Doyle, C., Gilchrist, M., Werner, E., & Monk, C. (2016). Maternal abuse history and reduced fetal heart rate variability: Abuse-related sleep disturbance is a mediator. Development and Psychopathology, 20, 112. doi:10.1017/S0954579416000997Google Scholar
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Science USA, 105, 1704617049. doi:10.1073/pnas.0806560105Google Scholar
Hoffman, M. C., Mazzoni, S. E., Wagner, B. D., Laudenslager, M. L., & Ross, R. G. (2016). Measures of maternal stress and mood in relation to preterm birth. Obstetrics Gynecology, 127, 545552. doi:10.1097/AOG.0000000000001287Google Scholar
Jeanneteau, F., Deinhardt, K., Miyoshi, G., Bennett, A. M., & Chao, M. V. (2010). The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nature Neuroscience, 13, 13731379. doi:10.1038/nn.2655Google Scholar
Jung, C., Ho, J. T., Torpy, D. J., Rogers, A., Doogue, M., Lewis, J. G., … Inder, W. J. (2011). A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. Journal of Clinical Endocrinology and Metabolism, 96, 15331540. doi:10.1210/jc.2010-2395Google Scholar
Karege, F., Schwald, M., & Cisse, M. (2002). Postnatal development profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience Letters, 328, 261264.Google Scholar
Kertes, D. A., Bhatt, S. S., Kamin, H. S., Hughes, D. A., Rodney, N. C., & Mulligan, C. J. (2017). BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clinical Epigenetics, 9, 68. doi:10.1186/s13148-017-0367-xGoogle Scholar
Kundakovic, M., Gudsnuk, K., Herbstman, J. B., Tang, D., Perera, F. P., Champagne, F. A., & Pfaff, D. W. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Science USA, 112, 68076813. doi:10.1073/pnas.1408355111Google Scholar
Lawlor, D. A., Relton, C., Sattar, N., & Nelson, S. M. (2012). Maternal adiposity—A determinant of perinatal and offspring outcomes? Nature Reviews Endocrinology, 8, 679688. doi:10.1038/nrendo.2012.176Google Scholar
Mairesse, J., Lesage, J., Breton, C., Bréant, B., Hahn, T., Darnaudéry, M., … Viltart, O. (2007). Maternal stress alters endocrine function of the feto-placental unit in rats. American Journal of Physiology: Endocrinology and Metabolism, 292, E1526E1533. doi:10.1152/ajpendo.00574.2006Google Scholar
Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegard, S. J., Furth, M. E., … Yancopoulos, G. D. (1990). NT-3, BDNF, NGF in the developing rat nervous system: Parallel as well as reciprocal pattern of expression. Neuron, 5, 501509.Google Scholar
Mina, T. H., Räikkönen, K., Riley, S. C., Norman, J. E., & Reynolds, R. M. (2015). Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex. Psychoneuroendocrinology, 59, 112122. doi:10.1016/j.psyneuen.2015.05.004Google Scholar
Monk, C., Feng, T., Lee, S., Krupska, I., Champagne, F. A., & Tycko, B. (2016). Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. American Journal of Psychiatry, 173, 705713. doi:10.1176/appi.ajp.2015.15091171Google Scholar
Morgan, C. P., & Bale, T. L. (2011). Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. Journal of Neuroscience, 31, 1174811755. doi:10.1523/JNEUROSCI.1887-11.2011Google Scholar
Nakakura, T., Suzuki, M., Watanabe, Y., & Tanaka, S. (2007). Possible involvement of brain-derived neurotrophic factor (BDNF) in the innervation of dopaminergic neurons from the rat periventricular nucleus to the pars intermedia. Zoological Science, 24, 10861093. doi:10.2108/zsj.24.1086Google Scholar
O'Donnell, K. J., Jensen, A. B., Freeman, L., Khalife, N., O'Connor, T. G., & Glover, V. (2012). Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology, 37, 818826. doi:10.1016/j.psyneuen.2011.09.014Google Scholar
Peña, C. J., Monk, C., & Champagne, F. A. (2012). Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLOS ONE, 7, 19. doi:10.1371/journal.pone.0039791Google Scholar
Plant, D. T., Jones, F. W., Pariante, C. M., & Pawlby, S. (in press). Association between maternal childhood trauma and offspring childhood psychopathology: Mediation analysis from the ALSPAC cohort. British Journal of Psychiatry. doi:10.1192/bjp.bp.117.198721Google Scholar
Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., & Elbert, T. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21. doi:10.1038/tp.2011.21Google Scholar
Reynolds, R. M., Pesonen, A.-K., O'Reilly, J. R., Tuovinen, S., Lahti, M., Kajantie, E., … Räikkönen, K. (2015). Maternal depressive symptoms throughout pregnancy are associated with increased placental glucocorticoid sensitivity. Psychological Medicine, 45, 20232030. doi:10.1017/S003329171400316XGoogle Scholar
Rumajogee, P., Vergé, D., Hanoun, N., Brisorgueil, M. J., Hen, R., Lesch, K. P., … Miquel, M. C. (2004). Adaption of the serotoninergic neuronal phenotype in the absence of 5-HT autoreceptors or the 5-HT transporter: Involvement of BDNF and cAMP. European Journal of Neuroscience, 19, 937944.Google Scholar
Saavedra-Rodriguez, L., & Feig, L. A. (2013). Chronic social instability induces anxiety and defective social interactions across generations. Biological Psychiatry, 73, 4453. doi:10.1016/j.biopsych.2012.06.035Google Scholar
Sánchez-Guijo, A., Hartmann, M. F., Shi, L., Remer, T., & Wudy, S. A. (2014). Determination of free cortisol and free cortisone in human urine by on-line turbulent flow chromatography coupled to fused-core chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS). Analytic Bioanalytic Chemistry, 406, 793801. doi:10.1007/s00216-013-7505-xGoogle Scholar
Sarkar, P., Bergman, K., O'Connor, T. G., & Glover, V. (2008). Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: Possible implications for foetal programming. Journal of Neuroendocrinology, 20, 489496. doi:10.1111/j.1365-2826.2008.01659.xGoogle Scholar
Scher, C. D., Stein, M. B., Asmundson, G. J., McCreary, D. R., & Forde, D. R. (2001). The childhood trauma questionnaire in a community sample: Psychometric properties and normative data. Journal of Trauma and Stress, 14, 843857. doi:10.1023/A:1013058625719Google Scholar
Seckl, J. R., & Holmes, M. C. (2007). Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nature Clinical Practice in Endocrinology and Metabolism, 3, 479488. doi:10.1038/ncpendmet0515Google Scholar
Seth, S., Lewis, A. J., Saffery, R., Lappas, M., & Galbally, M. (2015). Maternal prenatal mental health and placental 11beta-HSD gene expression: Inital findings from the Mercy Pregnancy and Emotional Wellbeing Study. International Journal of Molecular Science, 16, 2748227496. doi:10.3390/ijms161126034Google Scholar
Shea, A. K., Streiner, D. L., Fleming, A., Kamath, M. V., Broad, K., & Steiner, M. (2007). The effect of depression, anxiety and early life trauma on the cortisol awakening response during pregnancy: Preliminary results. Psychoneuroendocrinology, 32, 10131020.Google Scholar
Staneva, A., Bogossian, F., Pritchard, M., & Wittkowski, A. (2015). The effects of maternal depression, anxiety, and perceived stress during pregnancy on preterm birth: A systematic review. Women Birth, 28, 179193. doi:10.1016/j.wombi.2015.02.003Google Scholar
Thayer, Z. M., & Kuzawa, C. W. (2014). Early origins of health disparities: Material deprivation predicts maternal evening cortisol in pregnancy and offspring cortisol reactivity in the first few weeks of life. American Journal of Human Biology, 26, 723730. doi:10.1002/ajhb.22532Google Scholar
Togher, K. L., O'Keeffe, M. M., Khashan, A. S., Gutierrez, H., Kenny, L. C., & O'Keeffe, G. W. (2014). Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics, 9, 816822. doi:10.4161/epi.28703Google Scholar
Wadhwa, P. D., Sandman, C. A., Porto, M., Dunkel-Schetter, C., & Garite, T. J. (1993). The association between prenatal stress and infant birth weight and gestational age at birth: A prospective investigation. American Journal of Obstetrics and Gynecology, 169, 858865.Google Scholar
Wang, C. F., & Ye, L. Y. (2008). Relationship between brain-derived neurotrophic factor and birth weight in neonates. Zhongguo Dang Dai Er Ke Za Zhi, 10, 7072.Google Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.Google Scholar
Welberg, L. A. M., Thrivikraman, K. V., & Plotsky, P. M. (2005). Chronic maternal stress inhibits the capacity to up-regulate placental 11ß-hydroxysteroid dehydrogenase type 2 activity. Journal of Endocrinology, 186, 712. doi:10.1677/joe.1.06374Google Scholar
Winston, J. H., Li, Q., & Sarna, S. K. (2014). Chronic prenatal stress epigenetically modifies spinal cord BDNF expression to induce sex-specific visceral hypersensitivity in offspring. Neurogastroenterology and Motility, 26, 715730. doi:10.1111/nmo.12326Google Scholar
Yu, I. T., Lee, S. H., Lee, Y. S., & Son, H. (2004). Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochemistry and Biophysics Research Communication, 317, 484490. doi:10.1016/j.bbrc.2004.03.071Google Scholar
Yuan, T. F., Li, A., Sun, X., Ouyang, H., Campos, C., Rocha, N. B., … So, K. F. (2016). Transgenerational inheritance of paternal neurobehavioral phenotypes: Stress, addiction, ageing and metabolism. Molecular Neurobiology, 53, 63676376. doi:10.1007/s12035-015-9526-2Google Scholar