Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T00:52:20.428Z Has data issue: false hasContentIssue false

The endocrinology of human caregiving and its intergenerational transmission

Published online by Cambridge University Press:  20 October 2016

Peter A. Bos*
Affiliation:
Utrecht University
*
Address correspondence and reprint requests to: Peter A. Bos, Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands; E-mail: p.a.bos@uu.nl.

Abstract

Variation in the quality of parental care has a tremendous impact on a child's social–emotional development. Research investigating the predictors of this variability in human caregiving behavior has mostly focused on learning mechanisms. Evidence is currently accumulating for the complementary underlying role of steroid hormones and neuropeptides. An overview is provided of the hormones and neuropeptides relevant for human caregiving behavior. Then the developmental factors are described that stimulate variability in sensitivity to these hormones and neuropeptides, which may result in variability in the behavioral repertoire of caregiving. The role of genetic variation in neuropeptide and steroid receptors, the role of testosterone and oxytocin during fetal development and parturition, and the impact of experienced caregiving in childhood on functioning of the neuroendocrine stress and oxytocin system are discussed. Besides providing a heuristic framework for further research on the ontogenetic development of human caregiving, a neuroendocrine model is also presented for the intergenerational transmission of caregiving practices. Insight into the underlying biological mechanisms that bring about maladaptive caregiving behavior, such as neglect and insensitive parenting, will hopefully result in more efficient approaches to reduce the high prevalence of such behavior and to minimize the impact on those affected.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I thank Marinus H. van IJzendoorn, Marian J. Bakermans-Kranenburg, Bernet Elzinga, Dennis Hofman, Hannah Spencer, and the reviewers for their valuable comments on the manuscript. The work in this paper was supported by a grant from the Netherlands Society of Scientific Research (451-14-015) and a Dynamics of Youth seed grant from Utrecht University.

References

Acher, R. (1980). Molecular evolution of biologically active polypeptides. Proceedings of the Royal Society of London: Series B. Biological Sciences, 210, 2143.Google ScholarPubMed
Anda, R. F., Butchart, A., Felitti, V. J., & Brown, D. W. (2010). Building a framework for global surveillance of the public health implications of adverse childhood experiences. American Journal of Preventive Medicine, 39, 9398.CrossRefGoogle ScholarPubMed
Andersen, S., & Teicher, M. (2009). Desperately driven and no brakes: Developmental stress exposure and subsequent risk for substance abuse. Neuroscience & Biobehavioral Reviews, 33, 516524.CrossRefGoogle ScholarPubMed
Apter-Levy, Y., Feldman, M., Vakart, A., Ebstein, R. P., & Feldman, R. (2013). Impact of maternal depression across the first 6 years of life on the child's mental health, social engagement, and empathy: The moderating role of oxytocin. American Journal of Psychiatry, 170, 11611168.CrossRefGoogle ScholarPubMed
Apter-Levi, Y., Zagoory-Sharon, O., & Feldman, R. (2014). Oxytocin and vasopressin support distinct configurations of social synchrony. Brain Research, 1580, 124132.CrossRefGoogle ScholarPubMed
Auyeung, B., Baron-Cohen, S., Ashwin, E., Knickmeyer, R., Taylor, K., Hackett, G., & Hines, M. (2009). Fetal testosterone predicts sexually differentiated childhood behavior in girls and in boys. Psychological science, 20, 144148.CrossRefGoogle ScholarPubMed
Baibazarova, E., van de Beek, C., Cohen-Kettenis, P. T., Buitelaar, J., Shelton, K. H., & van Goozen, S. H. (2013). Influence of prenatal maternal stress, maternal plasma cortisol and cortisol in the amniotic fluid on birth outcomes and child temperament at 3 months. Psychoneuroendocrinology, 38, 907915.CrossRefGoogle ScholarPubMed
Bailey, J., Hill, K., Oesterle, S., & Hawkins, J. (2009). Parenting practices and problem behavior across three generations: Monitoring, harsh discipline, and drug use in the intergenerational transmission of externalizing behavior. Developmental Psychology, 45, 12141226.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2008). Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Social Cognitive and Affective Neuroscience, 3, 128134.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2013). Sniffing around oxytocin: Review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Translational Psychiatry, 3, e258.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2014). A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatric Genetics, 24, 4551.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Riem, M. M., Tops, M., & Alink, L. R. (2012). Oxytocin decreases handgrip force in reaction to infant crying in females without harsh parenting experiences. Social Cognitive and Affective Neuroscience, 7, 951957.CrossRefGoogle ScholarPubMed
Ball, J. S., & Links, P. S. (2009). Borderline personality disorder and childhood trauma: Evidence for a causal relationship. Current Psychiatry Reports, 11, 6368.CrossRefGoogle ScholarPubMed
Balthazart, J., Taziaux, M., Holloway, K., Ball, G. F., & Cornil, C. A. (2009). Behavioral effects of brain-derived estrogens in birds. Annals of the New York Academy of Sciences, 1163, 3148.CrossRefGoogle ScholarPubMed
Banerjee, S. B., & Liu, R. C. (2013). Storing maternal memories: Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Frontiers in Neuroendocrinology, 34, 300314.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (2009). Autism: The empathizing-systemizing (E-S) theory. Annals of the New York Academy of Sciences, 1156, 6880.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Auyeung, B., Nørgaard-Pedersen, B., Hougaard, D., Abdallah, M., Melgaard, L., … Lombardo, M. (2015). Elevated fetal steroidogenic activity in autism. Molecular Psychiatry, 20, 369376.CrossRefGoogle ScholarPubMed
Bartz, J. A., Simeon, D., Hamilton, H., Kim, S., Crystal, S., Braun, A., … Hollander, E. (2011). Oxytocin can hinder trust and cooperation in borderline personality disorder. Social Cognitive and Affective Neuroscience, 6, 556563.CrossRefGoogle ScholarPubMed
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Science, 15, 301309.Google ScholarPubMed
Bartz, J. A., Zaki, J., Ochsner, K. N., Bolger, N., Kolevzon, A., Ludwig, N., & Lydon, J. E. (2010). Effects of oxytocin on recollections of maternal care and closeness. Proceedings of the National Academy of Sciences, 107, 2137121375.CrossRefGoogle ScholarPubMed
Belsky, J. (2005). The developmental and evolutionary psychology of intergenerational transmission of attachment. In Carter, C. S., Ahnert, L., Grossmann, K. E., Hrdy, S. B., Lamb, M. E., Porges, S. W., & Sachser, N. (Eds.), Attachment and bonding: A new synthesis (pp. 169198). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Belsky, J., Youngblade, L., & Pensky, E. (1989). Childrearing history, marital quality, and maternal affect: Intergenerational transmission in a low-risk sample. Development and Psychopathology, 1, 291304.CrossRefGoogle Scholar
Ben-Ari, Y. (2015). Is birth a critical period in the pathogenesis of autism spectrum disorders? Nature Reviews Neuroscience, 16, 498505.CrossRefGoogle ScholarPubMed
Berger, J., Heinrichs, M., von Dawans, B., Way, B. M., & Chen, F. S. (2016). Cortisol modulates men's affiliative responses to acute social stress. Psychoneuroendocrinology, 63, 19.CrossRefGoogle ScholarPubMed
Berntsen, D., Johannessen, K., Thomsen, Y., Bertelsen, M., Hoyle, R., & Rubin, D. (2012). Peace and war: Trajectories of posttraumatic stress disorder symptoms before, during, and after military deployment in Afghanistan. Psychological Science. Advance online publication.CrossRefGoogle ScholarPubMed
Berzenski, S. R., Yates, T. M., & Egeland, B. (2014). A multidimensional view of continuity in intergenerational transmission of child maltreatment. In Korbin, J. E. & Krugman, R. D. (Eds.), Handbook of child maltreatment (pp. 115129). Dordrecht: Springer.CrossRefGoogle Scholar
Bhandari, R., Bakermans-Kranenburg, M. J., van der Veen, R., Parsons, C. E., Young, K. S., Grewen, K. M., … van IJzendoorn, M. H. (2014). Salivary oxytocin mediates the association between emotional maltreatment and responses to emotional infant faces. Physiology & Behavior, 131, 123128.CrossRefGoogle ScholarPubMed
Bhandari, R., van der Veen, R., Parsons, C. E., Young, K. S., Voorthuis, A., Bakermans-Kranenburg, M. J., … van IJzendoorn, M. H. (2014). Effects of intranasal oxytocin administration on memory for infant cues: Moderation by childhood emotional maltreatment. Social Neuroscience, 9, 536547.CrossRefGoogle ScholarPubMed
Biegon, A., Kim, S. W., Alexoff, D. L., Jayne, M., Carter, P., Hubbard, B., … Fowler, J. S. (2010). Unique distribution of aromatase in the human brain: In vivo studies with PET and [N-methyl-11C]vorozole. Synapse, 64, 801807.CrossRefGoogle ScholarPubMed
Blanchard, A., Lyons, M., & Nelson, E. (2014). What is past is prologue: Pre-natal testosterone and parental bonding predicts adult attachment styles. Personality and Individual Differences, 60, S47.CrossRefGoogle Scholar
Blustein, J., & Liu, J. (2015). Time to consider the risks of caesarean delivery for long term child health. British Medical Journal, 350, h2410.CrossRefGoogle ScholarPubMed
Bos, P. A., Hermans, E. J., Montoya, E. R., Ramsey, N. F., & van Honk, J. (2010). Testosterone administration modulates neural responses to crying infants in young females. Psychoneuroendocrinology, 35, 114121.CrossRefGoogle ScholarPubMed
Bos, P. A., Hermans, E. J., Ramsey, N. F., & van Honk, J. (2012). The neural mechanisms by which testosterone acts on interpersonal trust. NeuroImage, 61, 730737.CrossRefGoogle ScholarPubMed
Bos, P. A., Montoya, E. R., Hermans, E. J., Keysers, C., & van Honk, J. (2015). Oxytocin reduces neural activity in the pain circuitry when seeing pain in others. NeuroImage, 113, 217224.CrossRefGoogle ScholarPubMed
Bos, P. A., Montoya, E. R., Terburg, D., & van Honk, J. (2014). Cortisol administration increases hippocampal activation to infant crying in males depending on childhood neglect. Human Brain Mapping, 35, 51165126.CrossRefGoogle ScholarPubMed
Bos, P. A., Panksepp, J., Bluthe, R. M., & Honk, J. V. (2012). Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology, 33, 1735.CrossRefGoogle ScholarPubMed
Bos, P. A., Terburg, D., & van Honk, J. (2010b). Testosterone decreases trust in socially naive humans. Proceedings of the National Academy of Sciences, 107, 99919995.CrossRefGoogle ScholarPubMed
Bos, P. A., van Honk, J., Ramsey, N. F., Stein, D. J., & Hermans, E. J. (2013). Testosterone administration in women increases amygdala responses to fearful and happy faces. Psychoneuroendocrinology, 38, 808817.CrossRefGoogle ScholarPubMed
Bosch, O. J., Meddle, S. L., Beiderbeck, D. I., Douglas, A. J., & Neumann, I. D. (2005). Brain oxytocin correlates with maternal aggression: Link to anxiety. Journal of Neuroscience, 25, 68076815.CrossRefGoogle ScholarPubMed
Bosch, O. J., & Neumann, I. D. (2008). Brain vasopressin is an important regulator of maternal behavior independent of dams' trait anxiety. Proceedings of the National Academy of Sciences, 105, 1713917144.CrossRefGoogle ScholarPubMed
Bosch, O. J., & Neumann, I. D. (2012). Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: From central release to sites of action. Hormones and Behavior, 61, 293303.CrossRefGoogle ScholarPubMed
Bowers, M. E., & Yehuda, R. (2016). Intergenerational transmission of stress in humans. Neuropsychopharmacology, 41, 232244.CrossRefGoogle ScholarPubMed
Bowlby, J. (1983). Attachment: Vol. 1. Attachment and loss. New York: Basic Books.Google Scholar
Breedlove, S. M. (2010). Minireview: Organizational hypothesis: Instances of the fingerpost. Endocrinology, 151, 41164122.CrossRefGoogle ScholarPubMed
Bretherton, I., & Munholland, K. A. (2008). Internal working models in attachment relationships: Elaborating a central construct in attachment theory. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (2nd ed.). New York: Guilford Press.Google Scholar
Bridges, R. S. (2015). Neuroendocrine regulation of maternal behavior. Frontiers in Neuroendocrinology, 36, 178196.CrossRefGoogle ScholarPubMed
Briffaud, V., Williams, P., Courty, J., & Broberger, C. (2015). Excitation of tuberoinfundibular dopamine neurons by oxytocin: Crosstalk in the control of lactation. Journal of Neuroscience, 35, 42294237.CrossRefGoogle ScholarPubMed
Broad, K., Keverne, E., & Kendrick, K. (1995). Corticotrophin releasing factor mRNA expression in the sheep brain during pregnancy, parturition and lactation and following exogenous progesterone and oestrogen treatment. Molecular Brain Research, 29, 310316.CrossRefGoogle ScholarPubMed
Brown, S. L., Fredrickson, B. L., Wirth, M. M., Poulin, M. J., Meier, E. A., Heaphy, E. D., Cohen, M. D., & Schultheiss, O. C. (2009). Social closeness increases salivary progesterone in humans. Hormones and Behavior, 56, 108111.CrossRefGoogle ScholarPubMed
Brunnlieb, C., Nave, G., Camerer, C. F., Schosser, S., Vogt, B., Münte, T. F., & Heldmann, M. (2016). Vasopressin increases human risky cooperative behavior. Proceedings of the National Academy of Sciences, 113, 20512056.CrossRefGoogle ScholarPubMed
Burghy, C., Stodola, D., Ruttle, P., Molloy, E., Armstrong, J., Oler, J., … Birn, R. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience. Advance online publication.CrossRefGoogle ScholarPubMed
Bystrova, K., Ivanova, V., Edhborg, M., Matthiesen, A. S., Ransjö-Arvidson, A. B., Mukhamedrakhimov, R., … Widström, A. M. (2009). Early contact versus separation: Effects on mother–infant interaction one year later. Birth, 36, 97109.CrossRefGoogle ScholarPubMed
Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23, 779818.CrossRefGoogle ScholarPubMed
Carter, C. S. (2014). Oxytocin pathways and the evolution of human behavior. Annual Review of Psychology, 65, 1739.CrossRefGoogle ScholarPubMed
Carter, C. S., Pournajafi-Nazarloo, H., Kramer, K. M., Ziegler, T. E., White-Traut, R., Bello, D., & Schwertz, D. (2007). Oxytocin: Behavioral associations and potential as a salivary biomarker. Annals of the New York Academy of Sciences, 1098, 312322.CrossRefGoogle ScholarPubMed
Cassidy, J., & Shaver, P. R. (2008). Handbook of attachment: Theory, research, and clinical applications (2nd ed.). New York: Guilford Press.Google Scholar
Cecil, C. A., Lysenko, L. J., Jaffee, S. R., Pingault, J. B., Smith, R. G., Relton, C. L., … Barker, E. D. (2014). Environmental risk, oxytocin receptor gene (OXTR) methylation and youth callous–unemotional traits: A 13-year longitudinal study. Molecular Psychiatry, 19, 10711077.CrossRefGoogle ScholarPubMed
Chabris, C., Hebert, B., Benjamin, D., Beauchamp, J., Cesarini, D., van der Loos, M., … Laibson, D. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23, 13141323.CrossRefGoogle ScholarPubMed
Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22, 31813186.CrossRefGoogle ScholarPubMed
Champagne, F. (2011). Maternal imprints and the origins of variation. Hormones and Behavior, 60, 411.CrossRefGoogle ScholarPubMed
Chelnokova, O., Laeng, B., Eikemo, M., Riegels, J., Løseth, G., Maurud, H., … Leknes, S. (2014). Rewards of beauty: The opioid system mediates social motivation in humans. Molecular Psychiatry, 19, 746747.CrossRefGoogle ScholarPubMed
Chen, F., Kumsta, R., Dvorak, F., Domes, G., Yim, O., Ebstein, R., & Heinrichs, M. (2015). Genetic modulation of oxytocin sensitivity: A pharmacogenetic approach. Translational Psychiatry, 5, e664.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2006). Fostering secure attachment in infants in maltreating families through preventive interventions. Development and Psychopathology, 18, 623649.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.CrossRefGoogle ScholarPubMed
Clark, C. L., John, N. S., Pasca, A. M., Hyde, S. A., Hornbeak, K., Abramova, M., … Penn, A. A. (2013). Neonatal CSF oxytocin levels are associated with parent report of infant soothability and sociability. Psychoneuroendocrinology, 38, 12081212.CrossRefGoogle ScholarPubMed
Cohen-Bendahan, C. C., Beijers, R., van Doornen, L. J., & de Weerth, C. (2015). Explicit and implicit caregiving interests in expectant fathers: Do endogenous and exogenous oxytocin and vasopressin matter? Infant Behavior and Development, 41, 2637.CrossRefGoogle ScholarPubMed
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.CrossRefGoogle ScholarPubMed
Curley, J., Jensen, C., Mashoodh, R., & Champagne, F. (2011). Social influences on neurobiology and behavior: Epigenetic effects during development. Psychoneuroendocrinology, 36, 352371.CrossRefGoogle ScholarPubMed
Curley, J. P. (2011). The mu-opioid receptor and the evolution of mother-infant attachment: Theoretical comment on Higham et al. (2011). Behavioral Neuroscience, 125, 273278.CrossRefGoogle ScholarPubMed
Curley, J. P., & Keverne, E. B. (2005). Genes, brains and mammalian social bonds. Trends in Ecology and Evolution, 20, 561567.CrossRefGoogle ScholarPubMed
Dabbs, J. M. B., & Dabbs, M. G. (2000). Heroes, rogues, and lovers: Testosterone and behavior. New York: McGraw-Hill.Google Scholar
Dannlowski, U., Kugel, H., Grotegerd, D., Redlich, R., Opel, N., Dohm, K., … Baune, B. T. (2015). Disadvantage of social sensitivity: Interaction of oxytocin receptor genotype and child maltreatment on brain structure. Biological Psychiatry. Advance online publication.Google ScholarPubMed
De Dreu, C. K. (2012). Oxytocin modulates the link between adult attachment and cooperation through reduced betrayal aversion. Psychoneuroendocrinology, 37, 871880.CrossRefGoogle ScholarPubMed
De Dreu, C. K., Greer, L. L., Handgraaf, M. J., Shalvi, S., van Kleef, G. A., Baas, M., … Feith, S. W. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 328, 14081411.CrossRefGoogle ScholarPubMed
De Dreu, C. K., Greer, L. L., van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. (2011). Oxytocin promotes human ethnocentrism. Proceedings of the National Academy of Sciences, 108, 12621266.CrossRefGoogle ScholarPubMed
De Haan, M., & Gunnar, M. R. (2009). Handbook of developmental social neuroscience. New York: Guilford Press.Google Scholar
de Macks, Z. A. O., Moor, B. G., Overgaauw, S., Güroğlu, B., Dahl, R. E., & Crone, E. A. (2011). Testosterone levels correspond with increased ventral striatum activation in response to monetary rewards in adolescents. Developmental Cognitive Neuroscience, 1, 506516.CrossRefGoogle Scholar
de Souza Silva, M. A., Mattern, C., Topic, B., Buddenberg, T. E., & Huston, J. P. (2009). Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone. European Neuropsychopharmacology, 19, 5363.CrossRefGoogle ScholarPubMed
DeVries, A. C., DeVries, M. B., Taymans, S. E., & Carter, C. S. (1996). The effects of stress on social preferences are sexually dimorphic in prairie voles. Proceedings of the National Academy of Sciences, 93, 1198011984.CrossRefGoogle ScholarPubMed
de Vries, G. J. (2008). Sex differences in vasopressin and oxytocin innervation of the brain. Progress in Brain Research, 170, 1727.CrossRefGoogle ScholarPubMed
Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biological Psychiatry, 65, 728731.CrossRefGoogle ScholarPubMed
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior and Development, 31, 539553.CrossRefGoogle ScholarPubMed
Dumais, K. M., & Veenema, A. H. (2016). Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, 40, 123.CrossRefGoogle ScholarPubMed
Ebert, A., Kolb, M., Heller, J., Edel, M.-A., Roser, P., & Brüne, M. (2013). Modulation of interpersonal trust in borderline personality disorder by intranasal oxytocin and childhood trauma. Social Neuroscience, 8, 305313.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Israel, S., Lerer, E., Uzefovsky, F., Shalev, I., Gritsenko, I., … Yirmiya, N. (2009). Arginine vasopressin and oxytocin modulate human social behavior. Annals of the New York Academy of Sciences, 1167, 87102.CrossRefGoogle ScholarPubMed
Ehrhardt, A. A., & Meyer-Bahlburg, H. F. (1981). Effects of prenatal sex hormones on gender-related behavior. Science, 211, 13121318.CrossRefGoogle ScholarPubMed
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Elzinga, B. M., Roelofs, K., Tollenaar, M. S., Bakvis, P., van Pelt, J., & Spinhoven, P. (2008). Diminished cortisol responses to psychosocial stress associated with lifetime adverse events: A study among healthy young subjects. Psychoneuroendocrinology, 33, 227237.CrossRefGoogle ScholarPubMed
Elzinga, B. M., Spinhoven, P., Berretty, E., de Jong, P., & Roelofs, K. (2010). The role of childhood abuse in HPA axis reactivity in social anxiety disorder: A pilot study. Biological Psychology, 83, 16.CrossRefGoogle ScholarPubMed
Endendijk, J. J., Hallers-Haalboom, E. T., Groeneveld, M. G., van Berkel, S. R., van der Pol, L. D., Bakermans-Kranenburg, M. J., & Mesman, J. (2016). Diurnal testosterone variability is differentially associated with parenting quality in mothers and fathers. Hormones and Behavior, 80, 6875.CrossRefGoogle ScholarPubMed
Engelmann, M., Landgraf, R., & Wotjak, C. T. (2004). The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: An old concept revisited. Frontiers in Neuroendocrinology, 25, 132149.CrossRefGoogle ScholarPubMed
Fan, Y., Herrera-Melendez, A. L., Pestke, K., Feeser, M., Aust, S., Otte, C., … Grimm, S. (2014). Early life stress modulates amygdala–prefrontal functional connectivity: Implications for oxytocin effects. Human Brain Mapping, 35, 53285339.CrossRefGoogle ScholarPubMed
Fan, Y., Pestke, K., Feeser, M., Aust, S., Pruessner, J. C., Boker, H., … Grimm, S. (2015). Amygdala-hippocampal connectivity changes during acute psychosocial stress: Joint effect of early life stress and oxytocin. Neuropsychopharmacology, 40, 27362744.CrossRefGoogle ScholarPubMed
Fang, A., Hoge, E. A., Heinrichs, M., & Hofmann, S. G. (2014). Attachment style moderates the effects of oxytocin on social behaviors and cognitions during social rejection: Applying a RDoC framework to social anxiety. Clinical Psychological Science, 2, 740747.CrossRefGoogle ScholarPubMed
Farmer, C. G. (2000). Parental care: The key to understanding endothermy and other convergent features in birds and mammals. American Naturalist, 155, 326334.CrossRefGoogle ScholarPubMed
Feeser, M., Fan, Y., Weigand, A., Hahn, A., Gärtner, M., Aust, S., … Grimm, S. (2014). The beneficial effect of oxytocin on avoidance-related facial emotion recognition depends on early life stress experience. Psychopharmacology, 231, 47354744.CrossRefGoogle ScholarPubMed
Feldman, R. (2015). Sensitive periods in human social development: New insights from research on oxytocin, synchrony, and high-risk parenting. Development and Psychopathology, 27, 369395.CrossRefGoogle ScholarPubMed
Feldman, R., Weller, A., Zagoory-Sharon, O., & Levine, A. (2007). Evidence for a neuroendocrinological foundation of human affiliation: Plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychological Science, 18, 965970.CrossRefGoogle ScholarPubMed
Fleming, A. S., Corter, C., Stallings, J., & Steiner, M. (2002). Testosterone and prolactin are associated with emotional responses to infant cries in new fathers. Hormones and Behavior, 42, 399413.CrossRefGoogle ScholarPubMed
Fleming, A. S., Ruble, D., Krieger, H., & Wong, P. Y. (1997). Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Hormones and Behavior, 31, 145158.CrossRefGoogle ScholarPubMed
Fleming, A. S., Steiner, M., & Corter, C. (1997). Cortisol, hedonics, and maternal responsiveness in human mothers. Hormones and Behavior, 32, 8598.CrossRefGoogle ScholarPubMed
French, C. A., Cong, X., & Chung, K. S. (2016). Labor epidural analgesia and breastfeeding: A systematic review. Journal of Human Lactation. Advance online publication.CrossRefGoogle ScholarPubMed
Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Sciences, 102, 1723717240.CrossRefGoogle Scholar
Galbally, M., Lewis, A. J., van IJzendoorn, M., & Permezel, M. (2011). The role of oxytocin in mother-infant relations: A systematic review of human studies. Harvard Review of Psychiatry, 19, 114.CrossRefGoogle ScholarPubMed
Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., … Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17, 667669.CrossRefGoogle ScholarPubMed
Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences, 108, 1619416199.CrossRefGoogle ScholarPubMed
Gilbert, R., Widom, C., Browne, K., Fergusson, D., Webb, E., & Janson, S. (2009). Burden and consequences of child maltreatment in high-income countries. Lancet, 373, 6881.CrossRefGoogle ScholarPubMed
Gingnell, M., Engman, J., Frick, A., Moby, L., Wikström, J., Fredrikson, M., & Sundström-Poromaa, I. (2013). Oral contraceptive use changes brain activity and mood in women with previous negative affect on the pill—A double-blinded, placebo-controlled randomized trial of a levonorgestrel-containing combined oral contraceptive. Psychoneuroendocrinology, 38, 11331144.CrossRefGoogle ScholarPubMed
Gonzalez, A., Jenkins, J. M., Steiner, M., & Fleming, A. S. (2012). Maternal early life experiences and parenting: The mediating role of cortisol and executive function. Journal of the American Academy of Child & Adolescent Psychiatry, 51, 673682.CrossRefGoogle ScholarPubMed
González-Mariscal, G., McNitt, J., & Lukefahr, S. (2007). Maternal care of rabbits in the lab and on the farm: Endocrine regulation of behavior and productivity. Hormones and Behavior, 52, 8691.CrossRefGoogle ScholarPubMed
Goodson, J. L., & Kabelik, D. (2009). Dynamic limbic networks and social diversity in vertebrates: From neural context to neuromodulatory patterning. Frontiers in Neuroendocrinology, 30, 429441.CrossRefGoogle ScholarPubMed
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Prolactin, oxytocin, and the development of paternal behavior across the first six months of fatherhood. Hormones and Behavior, 58, 513518.CrossRefGoogle ScholarPubMed
Gray, P. B., & Anderson, K. G. (2010). Fatherhood: Evolution and human paternal behavior. Cambridge, MA: Harvard University Press.Google Scholar
Gregory, S. G., Connelly, J. J., Towers, A. J., Johnson, J., Biscocho, D., Markunas, C. A., … Ellis, P. (2009). Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Medicine, 7, 62.CrossRefGoogle ScholarPubMed
Grimm, S., Pestke, K., Feeser, M., Aust, S., Weigand, A., Wang, J., … Bajbouj, M. (2014). Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Social Cognitive and Affective Neuroscience, 9, 18281835.CrossRefGoogle ScholarPubMed
Guastella, A. J., & Hickie, I. B. (2016). Oxytocin treatment, circuitry and autism: A critical review of the literature placing oxytocin into the autism context. Biological Psychiatry, 79, 234242.CrossRefGoogle ScholarPubMed
Guastella, A. J., Howard, A. L., Dadds, M. R., Mitchell, P., & Carson, D. S. (2009). A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology, 34, 917923.CrossRefGoogle ScholarPubMed
Guastella, A. J., & MacLeod, C. (2012). A critical review of the influence of oxytocin nasal spray on social cognition in humans: Evidence and future directions. Hormones and Behavior, 61, 410418.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13, 611628.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle Scholar
Hahn, A. C., DeBruine, L. M., Fisher, C. I., & Jones, B. C. (2015). The reward value of infant facial cuteness tracks within-subject changes in women's salivary testosterone. Hormones and Behavior, 67, 5459.CrossRefGoogle ScholarPubMed
Hammock, E. A. (2015). Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology, 40, 2442.CrossRefGoogle ScholarPubMed
Heim, C., & Nemeroff, C. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 10231039.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693710.CrossRefGoogle ScholarPubMed
Heim, C., Young, L. J., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2009). Lower CSF oxytocin concentrations in women with a history of childhood abuse. Molecular Psychiatry, 14, 954958.CrossRefGoogle ScholarPubMed
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 13891398.CrossRefGoogle ScholarPubMed
Heinrichs, M., Neumann, I., & Ehlert, U. (2002). Lactation and stress: Protective effects of breast-feeding in humans. Stress, 5, 195203.CrossRefGoogle ScholarPubMed
Hermans, E. J., Bos, P. A., Ossewaarde, L., Ramsey, N. F., Fernandez, G., & van Honk, J. (2010). Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. NeuroImage, 52, 277283.CrossRefGoogle ScholarPubMed
Hermans, E. J., Henckens, M. J., Joëls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37, 304314.CrossRefGoogle ScholarPubMed
Hermans, E. J., Ramsey, N. F., & van Honk, J. (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63, 263270.CrossRefGoogle ScholarPubMed
Hermans, E. J., van Wingen, G., Bos, P. A., Putman, P., & van Honk, J. (2009). Reduced spontaneous facial mimicry in women with autistic traits. Biological Psychology, 80, 348353.CrossRefGoogle ScholarPubMed
Heyes, C. M., & Frith, C. D. (2014). The cultural evolution of mind reading. Science, 344, 1243091.CrossRefGoogle ScholarPubMed
Hinkelmann, K., Muhtz, C., Dettenborn, L., Agorastos, A., Wingenfeld, K., Spitzer, C., … Otte, C. (2013). Association between childhood trauma and low hair cortisol in depressed patients and healthy control subjects. Biological Psychiatry, 74, e15e17.CrossRefGoogle ScholarPubMed
Hitti, F. L., & Siegelbaum, S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature, 508, 8892.CrossRefGoogle ScholarPubMed
Hompes, T., Izzi, B., Gellens, E., Morreels, M., Fieuws, S., Pexsters, A., … Freson, K. (2013). Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. Journal of Psychiatric Research, 47, 880891.CrossRefGoogle ScholarPubMed
Hostinar, C. E., & Gunnar, M. R. (2013). Future directions in the study of social relationships as regulators of the HPA axis across development. Journal of Clinical Child and Adolescent Psychology, 42, 564575.CrossRefGoogle Scholar
Hrdy, S. B. (2005). Evolutionary context of human development: The cooperative breeding model. In Carter, C. S., Ahnert, L., Grossmann, K. E., Hrdy, S. B., Lamb, M. E., Porges, S. W., & Sachser, N. (Eds.), Attachment and bonding: A new synthesis (pp. 932). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Cambridge, MA: Harvard University Press.Google Scholar
Hsu, D. T., Sanford, B. J., Meyers, K. K., Love, T. M., Hazlett, K. E., Wang, H., … Korycinski, S. T. (2013). Response of the μ-opioid system to social rejection and acceptance. Molecular Psychiatry, 18, 12111217.CrossRefGoogle ScholarPubMed
Huffmeijer, R., Alink, L. R., Tops, M., Grewen, K. M., Light, K. C., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2013). The impact of oxytocin administration and maternal love withdrawal on event-related potential (ERP) responses to emotional faces with performance feedback. Hormones and Behavior, 63, 399410.CrossRefGoogle ScholarPubMed
Hurd, P. L., Vaillancourt, K. L., & Dinsdale, N. L. (2011). Aggression, digit ratio and variation in androgen receptor and monoamine oxidase A genes in men. Behavior Genetics, 41, 543556.CrossRefGoogle ScholarPubMed
Inagaki, T. K., Ray, L. A., Irwin, M. R., Way, B. M., & Eisenberger, N. I. (2016). Opioids and social bonding: Naltrexone reduces feelings of social connection. Social Cognitive and Affective Neuroscience, 11, 728735.CrossRefGoogle ScholarPubMed
Insel, T. R., & Young, L. J. (2001). The neurobiology of attachment. Nature Reviews Neuroscience, 2, 129136.CrossRefGoogle ScholarPubMed
Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12, 118134.CrossRefGoogle ScholarPubMed
Jaffee, S. R., McFarquhar, T., Stevens, S., Ouellet-Morin, I., Melhuish, E., & Belsky, J. (2015). Interactive effects of early and recent exposure to stressful contexts on cortisol reactivity in middle childhood. Journal of Child Psychology and Psychiatry, 56, 138146.CrossRefGoogle ScholarPubMed
Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: How does it work? Trends in Cognitive Sciences, 10, 152158.CrossRefGoogle ScholarPubMed
Jones, J. D., Cassidy, J., & Shaver, P. R. (2015). Parents' self-reported attachment styles: A review of links with parenting behaviors, emotions, and cognitions. Personality and Social Psychology Review, 19, 4476.CrossRefGoogle Scholar
Joosen, K., Mesman, J., Bakermans-Kranenburg, M., & van IJzendoorn, M. (2012). Maternal sensitivity to infants in various settings predicts harsh discipline in toddlerhood. Attachment and Human Development, 14, 101117.CrossRefGoogle ScholarPubMed
Kaiser, S., Kruijver, F. P., Swaab, D. F., & Sachser, N. (2003). Early social stress in female guinea pigs induces a masculinization of adult behavior and corresponding changes in brain and neuroendocrine function. Behavioural Brain Research, 144, 199210.CrossRefGoogle ScholarPubMed
Kendrick, K. M. (2000). Oxytocin, motherhood and bonding. Experimental Physiology, 85(Spec No), 111S124S.CrossRefGoogle ScholarPubMed
Kennell, N. M. (2013). Boys, girls, family, and the state of Sparta. In Bell, R., Grubbs, J. E., & Parkin, T. (Eds.), The Oxford handbook of childhood and education in the classical world (pp. 381395). New York: Oxford University Press.Google Scholar
Keverne, B., & Kendrick, K. (1994). Maternal behaviour in sheep and its neuroendocrine regulation. Acta Paediatrica, 83, 4756.CrossRefGoogle Scholar
Keyes, K. M., Eaton, N. R., Krueger, R. F., McLaughlin, K. A., Wall, M. M., Grant, B. F., & Hasin, D. S. (2012). Childhood maltreatment and the structure of common psychiatric disorders. British Journal of Psychiatry, 200, 107115.CrossRefGoogle ScholarPubMed
Kim, M., Loucks, R., Palmer, A., Brown, A., Solomon, K., Marchante, A., & Whalen, P. (2011). The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223, 403410.CrossRefGoogle ScholarPubMed
Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., … Meyer-Lindenberg, A. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 1148911493.CrossRefGoogle ScholarPubMed
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., … Bradley, B. (2013). Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nature Neuroscience, 16, 3341.CrossRefGoogle ScholarPubMed
Kundakovic, M., & Champagne, F. A. (2015). Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology, 40, 141153.CrossRefGoogle ScholarPubMed
Kuo, P. X., Carp, J., Light, K. C., & Grewen, K. M. (2012). Neural responses to infants linked with behavioral interactions and testosterone in fathers. Biological Psychology, 91, 302306.CrossRefGoogle ScholarPubMed
Kuo, P. X., Saini, E. K., Thomason, E., Schultheiss, O. C., Gonzalez, R., & Volling, B. L. (2016). Individual variation in fathers’ testosterone reactivity to infant distress predicts parenting behaviors with their 1-year-old infants. Developmental Psychobiology, 58, 303314.CrossRefGoogle ScholarPubMed
Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., … Lange, N. (2014). Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences, 111, 1301013015.CrossRefGoogle ScholarPubMed
Kuzawa, C. W., Gettler, L. T., Huang, Y.-Y., & McDade, T. W. (2010). Mothers have lower testosterone than non-mothers: Evidence from the Philippines. Hormones and Behavior, 57, 441447.CrossRefGoogle ScholarPubMed
Lahey, B. B., Michalska, K. J., Liu, C., Chen, Q., Hipwell, A. E., Chronis-Tuscano, A., … Decety, J. (2012). Preliminary genetic imaging study of the association between estrogen receptor-α gene polymorphisms and harsh human maternal parenting. Neuroscience Letters, 525, 1722.CrossRefGoogle ScholarPubMed
Landgraf, R., & Neumann, I. D. (2004). Vasopressin and oxytocin release within the brain: A dynamic concept of multiple and variable modes of neuropeptide communication. Frontiers in Neuroendocrinology, 25, 150176.CrossRefGoogle Scholar
Lanius, R. A., Vermetten, E., & Pain, C. (2010). The impact of early life trauma on health and disease: The hidden epidemic. New York: Cambridge University Press.CrossRefGoogle Scholar
Laurent, H. K., Harold, G. T., Leve, L., Shelton, K. H., & van Goozen, S. H. (2016). Understanding the unfolding of stress regulation in infants. Development and Psychopathology. Advance online publication.CrossRefGoogle ScholarPubMed
Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M., & Koenig, J. I. (2007). Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Research, 1156, 152167.CrossRefGoogle ScholarPubMed
Leveroni, C. L., & Berenbaum, S. A. (1998). Early androgen effects on interest in infants: Evidence from children with congenital adrenal hyperplasia. Developmental Neuropsychology, 14, 321340.CrossRefGoogle Scholar
Liberzon, I., Taylor, S. F., Phan, K. L., Britton, J. C., Fig, L. M., Bueller, J. A., … Zubieta, J.-K. (2007). Altered central μ-opioid receptor binding after psychological trauma. Biological Psychiatry, 61, 10301038.CrossRefGoogle ScholarPubMed
Little, A. C., Burriss, R. P., Petrie, M., Jones, B. C., & Roberts, S. C. (2013). Oral contraceptive use in women changes preferences for male facial masculinity and is associated with partner facial masculinity. Psychoneuroendocrinology, 38, 17771785.CrossRefGoogle ScholarPubMed
Lombardo, M. V., Ashwin, E., Auyeung, B., Chakrabarti, B., Lai, M.-C., Taylor, K., … Baron-Cohen, S. (2012). Fetal programming effects of testosterone on the reward system and behavioral approach tendencies in humans. Biological Psychiatry, 72, 839847.CrossRefGoogle ScholarPubMed
Lombardo, M. V., Ashwin, E., Auyeung, B., Chakrabarti, B., Taylor, K., Hackett, G., … Baron-Cohen, S. (2012). Fetal testosterone influences sexually dimorphic gray matter in the human brain. Journal of Neuroscience, 32, 674680.CrossRefGoogle ScholarPubMed
Lovallo, W. R. (2013). Early life adversity reduces stress reactivity and enhances impulsive behavior: Implications for health behaviors. International Journal of Psychophysiology, 90, 816.CrossRefGoogle ScholarPubMed
Luecken, L. J., MacKinnon, D. P., Jewell, S. L., Crnic, K. A., & Gonzales, N. A. (2015). Effects of prenatal factors and temperament on infant cortisol regulation in low-income Mexican American families. Developmental Psychobiology, 57, 961973.CrossRefGoogle ScholarPubMed
Luo, S., Li, B., Ma, Y., Zhang, W., Rao, Y., & Han, S. (2015). Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity. NeuroImage, 110, 2231.CrossRefGoogle ScholarPubMed
Lupien, S., McEwen, B., Gunnar, M., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
MacLean, P. D. (1985). Brain evolution relating to family, play, and the separation call. Archives of General Psychiatry, 42, 405417.CrossRefGoogle ScholarPubMed
Mah, B. L., Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., & Smith, R. (2015). Oxytocin promotes protective behavior in depressed mothers: A pilot study with the enthusiastic stranger paradigm. Depression and Anxiety, 32, 7681.CrossRefGoogle ScholarPubMed
Mah, B. L., van IJzendoorn, M. H., Smith, R., & Bakermans-Kranenburg, M. J. (2013). Oxytocin in postnatally depressed mothers: Its influence on mood and expressed emotion. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 40, 267272.CrossRefGoogle ScholarPubMed
Maner, J. K., Miller, S. L., Schmidt, N. B., & Eckel, L. A. (2010). The endocrinology of exclusion: Rejection elicits motivationally tuned changes in progesterone. Psychological Science, 21, 581588.CrossRefGoogle ScholarPubMed
Manuck, S. B., Marsland, A. L., Flory, J. D., Gorka, A., Ferrell, R. E., & Hariri, A. R. (2010). Salivary testosterone and a trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men. Psychoneuroendocrinology, 35, 94104.CrossRefGoogle Scholar
Marsh, A. A., Henry, H. Y., Pine, D. S., Gorodetsky, E. K., Goldman, D., & Blair, R. (2012). The influence of oxytocin administration on responses to infant faces and potential moderation by OXTR genotype. Psychopharmacology, 224, 469476.CrossRefGoogle ScholarPubMed
Martin, C. G., Kim, H. K., & Fisher, P. A. (2016). Differential sensitization of parenting on early adolescent cortisol: Moderation by profiles of maternal stress. Psychoneuroendocrinology, 67, 1826.CrossRefGoogle ScholarPubMed
Mascaro, J. S., Hackett, P. D., Gouzoules, H., Lori, A., & Rilling, J. K. (2014). Behavioral and genetic correlates of the neural response to infant crying among human fathers. Social Cognitive and Affective Neuroscience, 9, 17041712.CrossRefGoogle ScholarPubMed
Mascaro, J. S., Hackett, P. D., & Rilling, J. K. (2013). Testicular volume is inversely correlated with nurturing-related brain activity in human fathers. Proceedings of the National Academy of Sciences, 110, 1574615751.CrossRefGoogle ScholarPubMed
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22, 491495.CrossRefGoogle ScholarPubMed
McCall, C., & Singer, T. (2012). The animal and human neuroendocrinology of social cognition, motivation and behavior. Nature Neuroscience, 15, 681688.CrossRefGoogle ScholarPubMed
McCullough, M. E., Churchland, P. S., & Mendez, A. J. (2013). Problems with measuring peripheral oxytocin: Can the data on oxytocin and human behavior be trusted? Neuroscience & Biobehavioral Reviews, 37, 14851492.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2010). Stress, sex, and neural adaptation to a changing environment: Mechanisms of neuronal remodeling. Annals of the New York Academy of Sciences, 1204 (Suppl), E38E59.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Alves, S. E. (1999). Estrogen actions in the central nervous system. Endocrine Reviews, 20, 279307.Google ScholarPubMed
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., Turecki, G., & Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
Meaney, M. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 11611253.CrossRefGoogle Scholar
Meinlschmidt, G., & Heim, C. (2007). Sensitivity to intranasal oxytocin in adult men with early parental separation. Biological Psychiatry, 61, 11091111.CrossRefGoogle ScholarPubMed
Michalska, K. J., Decety, J., Liu, C., Chen, Q., Martz, M. E., Jacob, S., … Lahey, B. B. (2014). Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting. Frontiers in Behavioral Neuroscience, 8, 21.CrossRefGoogle ScholarPubMed
Mileva-Seitz, V. R., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2016). Genetic mechanisms of parenting. Hormones and Behavior, 77, 211223.CrossRefGoogle ScholarPubMed
Miller, T. V., & Caldwell, H. K. (2015). Oxytocin during development: Possible organizational effects on behavior. Frontiers in Endocrinology, 6, 76.CrossRefGoogle ScholarPubMed
Milner, J. (2003). Social information processing in high-risk and physically abusive parents. Child Abuse and Neglect, 27, 720.CrossRefGoogle ScholarPubMed
Montag, C., Sauer, C., Reuter, M., & Kirsch, P. (2013). An interaction between oxytocin and a genetic variation of the oxytocin receptor modulates amygdala activity toward direct gaze: Evidence from a pharmacological imaging genetics study. European Archives of Psychiatry and Clinical Neuroscience, 263, 169175.CrossRefGoogle Scholar
Montoya, E., Terburg, D., Bos, P., & Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36, 6573.CrossRefGoogle ScholarPubMed
Montoya, E. R., Bos, P. A., Terburg, D., Rosenberger, L. A., & van Honk, J. (2014). Cortisol administration induces global down-regulation of the brain's reward circuitry. Psychoneuroendocrinology, 47, 3142.CrossRefGoogle ScholarPubMed
Morgan, C., & Fisher, H. (2007). Environment and schizophrenia: Environmental factors in schizophrenia: Childhood trauma—A critical review. Schizophrenia Bulletin, 33, 310.CrossRefGoogle ScholarPubMed
Morris, A. S., Cui, L., & Steinberg, L. (2013). Parenting research and themes: What we have learned and where to go next. In Larzelere, R. E., Morris, A. S., & Harrist, A. W. (Eds.), Authoritative parenting: Synthesizing nurturance and discipline for optimal child development (pp. 3558). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Musser, E. D., Kaiser-Laurent, H., & Ablow, J. C. (2012). The neural correlates of maternal sensitivity: An fMRI study. Developmental Cognitive Neuroscience, 2, 428436.CrossRefGoogle ScholarPubMed
Naber, F., van IJzendoorn, M. H., Deschamps, P., van Engeland, H., & Bakermans-Kranenburg, M. J. (2010). Intranasal oxytocin increases fathers' observed responsiveness during play with their children: A double-blind within-subject experiment. Psychoneuroendocrinology, 35, 15831586.CrossRefGoogle ScholarPubMed
Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant-mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience & Biobehavioral Reviews, 22, 437.CrossRefGoogle ScholarPubMed
Nelson, R. J. (2005). An introduction to behavioral endocrinology. Sunderland, MA: Sinauer Associates.Google Scholar
Neumann, I. D. (2009). The advantage of social living: Brain neuropeptides mediate the beneficial consequences of sex and motherhood. Frontiers in Neuroendocrinology, 30, 483496.CrossRefGoogle ScholarPubMed
Nielsen, S. E., Segal, S. K., Worden, I. V., Yim, I. S., & Cahill, L. (2013). Hormonal contraception use alters stress responses and emotional memory. Biological Psychology, 92, 257266.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Manninen, S., Tuominen, L., Hirvonen, J., Kalliokoski, K. K., Nuutila, P., … Sams, M. (2015). Adult attachment style is associated with cerebral μ-opioid receptor availability in humans. Human Brain Mapping, 36, 36213628.CrossRefGoogle ScholarPubMed
Odent, M. (2013). Synthetic oxytocin and breastfeeding: Reasons for testing an hypothesis. Medical Hypotheses, 81, 889891.CrossRefGoogle ScholarPubMed
Oitzl, M. S., Champagne, D. L., van der Veen, R., & de Kloet, E. R. (2010). Brain development under stress: Hypotheses of glucocorticoid actions revisited. Neuroscience & Biobehavioral Reviews, 34, 853866.CrossRefGoogle ScholarPubMed
Olsson, A., Kopsida, E., Sorjonen, K., & Savic, I. (2016). Testosterone and estrogen impact social evaluations and vicarious emotions: A double-blind placebo-controlled study. Emotion, 16, 515523.CrossRefGoogle ScholarPubMed
Olza-Fernández, I., Gabriel, M. A. M., Gil-Sanchez, A., Garcia-Segura, L. M., & Arevalo, M. A. (2014). Neuroendocrinology of childbirth and mother–child attachment: The basis of an etiopathogenic model of perinatal neurobiological disorders. Frontiers in Neuroendocrinology, 35, 459472.CrossRefGoogle ScholarPubMed
Opel, N., Redlich, R., Zwanzger, P., Grotegerd, D., Arolt, V., Heindel, W., … Sams, M. (2014). Hippocampal atrophy in major depression: A function of childhood maltreatment rather than diagnosis. Neuropsychopharmacology, 39, 27232731.CrossRefGoogle ScholarPubMed
Osborne, L., Clive, M., Kimmel, M., Gispen, F., Guintivano, J., Brown, T., … Braier, A. (2015). Replication of epigenetic postpartum depression biomarkers and variation with hormone levels. Neuropsychopharmacology. Advance online publication.Google ScholarPubMed
Out, D., Pieper, S., Bakermans-Kranenburg, M. J., Zeskind, P. S., & van IJzendoorn, M. H. (2010). Intended sensitive and harsh caregiving responses to infant crying: The role of cry pitch and perceived urgency in an adult twin sample. Child Abuse and Neglect, 34, 863873.CrossRefGoogle Scholar
Packard, M. G., Schroeder, J. P., & Alexander, G. M. (1998). Expression of testosterone conditioned place preference is blocked by peripheral or intra-accumbens injection of alpha-flupenthixol. Hormones and Behavior, 34, 3947.CrossRefGoogle ScholarPubMed
Panksepp, J. (2009). Primary process affects and brain oxytocin. Biological Psychiatry, 65, 725727.CrossRefGoogle ScholarPubMed
Panksepp, J., Nelson, E., & Bekkedal, M. (1997). Brain systems for the mediation of social separation-distress and social-reward: Evolutionary antecedents and neuropeptide intermediaries. Annals of the New York Academy of Sciences, 807, 78100.CrossRefGoogle ScholarPubMed
Pechtel, P., & Pizzagalli, D. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology, 214, 5570.CrossRefGoogle ScholarPubMed
Peltola, M. J., Yrttiaho, S., Puura, K., Proverbio, A. M., Mononen, N., Lehtimäki, T., & Leppänen, J. M. (2014). Motherhood and oxytocin receptor genetic variation are associated with selective changes in electrocortical responses to infant facial expressions. Emotion, 14, 469.CrossRefGoogle ScholarPubMed
Peper, J., Pol, H. H., Crone, E., & van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 2837.CrossRefGoogle ScholarPubMed
Peper, J. S., de Reus, M. A., van den Heuvel, M. P., & Schutter, D. J. (2015). Short fused? associations between white matter connections, sex steroids, and aggression across adolescence. Human Brain Mapping, 36, 10431052.CrossRefGoogle ScholarPubMed
Peper, J. S., Koolschijn, P. C. M., & Crone, E. A. (2013). Development of risk taking: Contributions from adolescent testosterone and the orbito-frontal cortex. Journal of Cognitive Neuroscience, 25, 21412150.CrossRefGoogle ScholarPubMed
Peper, J. S., Mandl, R. C. W., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C. M. P., & Crone, E. A. (2013). Delay discounting and frontostriatal fiber tracts: A combined DTI and MTR study on impulsive choices in healthy young adults. Cerebral Cortex, 23, 16951702.CrossRefGoogle Scholar
Pierrehumbert, B., Torrisi, R., Ansermet, F., Borghini, A., & Halfon, O. (2012). Adult attachment representations predict cortisol and oxytocin responses to stress. Attachment and Human Development, 14, 453476.CrossRefGoogle ScholarPubMed
Pierrehumbert, B., Torrisi, R., Laufer, D., Halfon, O., Ansermet, F., & Popovic, M. B. (2010). Oxytocin response to an experimental psychosocial challenge in adults exposed to traumatic experiences during childhood or adolescence. Neuroscience, 166, 168177.CrossRefGoogle ScholarPubMed
Pratt, M., Apter-Levi, Y., Vakart, A., Feldman, M., Fishman, R., Feldman, T., … Feldman, R. (2015). Maternal depression and child oxytocin response: Moderation by maternal oxytocin and relational behavior. Depression and Anxiety, 32, 635646.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride. Journal of Neuroscience, 24, 28252831.CrossRefGoogle Scholar
Puglia, M. H., Lillard, T. S., Morris, J. P., & Connelly, J. J. (2015). Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proceedings of the National Academy of Sciences, 112, 33083313.CrossRefGoogle ScholarPubMed
Putman, P., & Roelofs, K. (2011). Effects of single cortisol administrations on human affect reviewed: Coping with stress through adaptive regulation of automatic cognitive processing. Psychoneuroendocrinology, 36, 439448.CrossRefGoogle ScholarPubMed
Reiner, I., van IJzendoorn, M., Bakermans-Kranenburg, M., Bleich, S., Beutel, M., & Frieling, H. (2015). Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype. Journal of Psychiatric Research, 65, 915.CrossRefGoogle ScholarPubMed
Repetti, R., Taylor, S., & Seeman, T. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128, 330366.CrossRefGoogle ScholarPubMed
Riem, M. M., Bakermans-Kranenburg, M. J., Huffmeijer, R., & van IJzendoorn, M. H. (2013). Does intranasal oxytocin promote prosocial behavior to an excluded fellow player? A randomized-controlled trial with Cyberball. Psychoneuroendocrinology, 38, 14181425.CrossRefGoogle Scholar
Riem, M. M., Bakermans-Kranenburg, M. J., Pieper, S., Tops, M., Boksem, M. A., Vermeiren, R. R., … Rombouts, S. A. (2011). Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: A randomized controlled trial. Biological Psychiatry, 70, 291297.CrossRefGoogle ScholarPubMed
Riem, M. M., van IJzendoorn, M. H., Tops, M., Boksem, M. A., Rombouts, S. A., & Bakermans-Kranenburg, M. J. (2011). No laughing matter: Intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter. Neuropsychopharmacology, 37, 12571266.CrossRefGoogle ScholarPubMed
Riem, M. M., van IJzendoorn, M. H., Tops, M., Boksem, M. A., Rombouts, S. A., & Bakermans-Kranenburg, M. J. (2013). Oxytocin effects on complex brain networks are moderated by experiences of maternal love withdrawal. European Neuropsychopharmacology, 23, 12881295.CrossRefGoogle ScholarPubMed
Rilling, J. K. (2013). The neural and hormonal bases of human parental care. Neuropsychologia, 51, 731747.CrossRefGoogle ScholarPubMed
Rilling, J. K., DeMarco, A. C., Hackett, P. D., Chen, X., Gautam, P., Stair, S., … Patel, R. (2014). Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology, 39, 237248.CrossRefGoogle ScholarPubMed
Rilling, J. K., & Young, L. J. (2014). The biology of mammalian parenting and its effect on offspring social development. Science, 345, 771776.CrossRefGoogle ScholarPubMed
Roisman, G. I., Holland, A., Fortuna, K., Fraley, R. C., Clausell, E., & Clarke, A. (2007). The Adult Attachment Interview and self-reports of attachment style: An empirical rapprochement. Journal of Personality and Social Psychology, 92, 678.CrossRefGoogle ScholarPubMed
Roney, J. R., Simmons, Z. L., & Lukaszewski, A. W. (2010). Androgen receptor gene sequence and basal cortisol concentrations predict men's hormonal responses to potential mates. Proceedings of the Royal Society of London B: Biological Sciences, 277, 5763.Google ScholarPubMed
Ross, H. E., & Young, L. J. (2009). Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Frontiers in Neuroendocrinology, 30, 534547.CrossRefGoogle ScholarPubMed
Ruttle, P. L., Shirtcliff, E. A., Armstrong, J. M., Klein, M. H., & Essex, M. J. (2015). Neuroendocrine coupling across adolescence and the longitudinal influence of early life stress. Developmental Psychobiology, 57, 688704.CrossRefGoogle ScholarPubMed
Sachser, N. (2005). Adult social bonding: Insights from studies in nonhuman animals. In Carter, C. S., Ahnert, L., Grossmann, K. E., Hrdy, S. B., Lamb, M. E., Porges, S. W., & Sachser, N. (Eds.), Attachment and bonding: A new synthesis (pp. 119–35). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Sachser, N., Kaiser, S., & Hennessy, M. B. (2013). Behavioural profiles are shaped by social experience: When, how and why. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120344.CrossRefGoogle ScholarPubMed
Saltzman, W., & Maestripieri, D. (2011). The neuroendocrinology of primate maternal behavior. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 11921204.CrossRefGoogle ScholarPubMed
Samuel, S., Hayton, B., Gold, I., Feeley, N., Carter, C. S., & Zelkowitz, P. (2015). Attachment security and recent stressful life events predict oxytocin levels: A pilot study of pregnant women with high levels of cumulative psychosocial adversity. Attachment and Human Development, 17, 272287.CrossRefGoogle Scholar
Sarachana, T., Xu, M., Wu, R. C., & Hu, V. W. (2011). Sex hormones in autism: Androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism. PLOS ONE, 6, e17116.CrossRefGoogle Scholar
Schechter, D. S., Moser, D. A., Paoloni-Giacobino, A., Stenz, L., Gex-Fabry, M., Aue, T., … Serpa, S. R. (2015). Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure. Frontiers in Psychology. Advance online publication.CrossRefGoogle ScholarPubMed
Schneider-Hassloff, H., Straube, B., Jansen, A., Nuscheler, B., Wemken, G., Witt, S. H., … Kircher, T. (2016). Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. NeuroImage, 134, 671684.CrossRefGoogle ScholarPubMed
Selig, J. P., & Little, T. D. (2012). Autoregressive and cross-lagged panel analysis for longitudinal data. In Laursen, B., Little, T. D., & Card, N. A. (Eds.), Handbook of developmental research methods (pp. 265278). New York: Guilford Press.Google Scholar
Seltzer, L. J., Ziegler, T., Connolly, M. J., Prososki, A. R., & Pollak, S. D. (2014). Stress-induced elevation of oxytocin in maltreated children: Evolution, neurodevelopment, and social behavior. Child Development, 85, 501512.CrossRefGoogle ScholarPubMed
Sewell, J. E. (1993). Cesarean section—A brief history. Washington, DC: National Library of Medicine.Google Scholar
Shahrestani, S., Kemp, A. H., & Guastella, A. J. (2013). The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: A meta-analysis. Neuropsychopharmacology, 38, 19291936.CrossRefGoogle ScholarPubMed
Shen, H. (2015). Neuroscience: The hard science of oxytocin. Nature, 522, 410412.CrossRefGoogle ScholarPubMed
Shonkoff, J. P. (2012). Leveraging the biology of adversity to address the roots of disparities in health and development. Proceedings of the National Academy of Sciences, 109(Suppl. 2), 1730217307.CrossRefGoogle ScholarPubMed
Simmons, Z. L., & Roney, J. R. (2011). Variation in CAG repeat length of the androgen receptor gene predicts variables associated with intrasexual competitiveness in human males. Hormones and Behavior, 60, 306312.CrossRefGoogle ScholarPubMed
Skrundz, M., Bolten, M., Nast, I., Hellhammer, D. H., & Meinlschmidt, G. (2011). Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology, 36, 18861893.CrossRefGoogle ScholarPubMed
Sripada, C. S., Phan, K. L., Labuschagne, I., Welsh, R., Nathan, P. J., & Wood, A. G. (2013). Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. International Journal of Neuropsychopharmacology, 16, 255260.CrossRefGoogle ScholarPubMed
Stallings, J., Fleming, A. S., Corter, C., Worthman, C., & Steiner, M. (2001). The effects of infant cries and odors on sympathy, cortisol, and autonomic responses in new mothers and nonpostpartum women. Parenting, 1, 71100.CrossRefGoogle Scholar
Stoltenborgh, M., Bakermans-Kranenburg, M., & van IJzendoorn, M. (2013). The neglect of child neglect: A meta-analytic review of the prevalence of neglect. Social Psychiatry and Psychiatric Epidemiology, 48, 345355.CrossRefGoogle ScholarPubMed
Storey, A. E., Noseworthy, D. E., Delahunty, K. M., Halfyard, S. J., & McKay, D. W. (2011). The effects of social context on the hormonal and behavioral responsiveness of human fathers. Hormones and Behavior, 60, 353361.CrossRefGoogle ScholarPubMed
Storey, A. E., & Ziegler, T. E. (2016). Primate paternal care: Interactions between biology and social experience. Hormones and Behavior, 77, 260271.CrossRefGoogle ScholarPubMed
Strathearn, L., Fonagy, P., Amico, J., & Montague, P. R. (2009). Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology, 34, 26552666.CrossRefGoogle ScholarPubMed
Struber, N., Struber, D., & Roth, G. (2014). Impact of early adversity on glucocorticoid regulation and later mental disorders. Neuroscience & Biobehavioral Reviews, 38, 1737.CrossRefGoogle ScholarPubMed
Swain, J. E., Kim, P., Spicer, J., Ho, S. S., Dayton, C. J., Elmadih, A., & Abel, K. M. (2014). Approaching the biology of human parental attachment: Brain imaging, oxytocin and coordinated assessments of mothers and fathers. Brain Research, 1580, 78101.CrossRefGoogle ScholarPubMed
Swain, J. E., Tasgin, E., Mayes, L. C., Feldman, R., Constable, R. T., & Leckman, J. F. (2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology and Psychiatry and Allied Disciplines, 49, 10421052.CrossRefGoogle ScholarPubMed
Tabak, B. A., Meyer, M. L., Castle, E., Dutcher, J. M., Irwin, M. R., Han, J. H., … Eisenberger, N. I. (2015). Vasopressin, but not oxytocin, increases empathic concern among individuals who received higher levels of paternal warmth: A randomized controlled trial. Psychoneuroendocrinology, 51, 253261.CrossRefGoogle Scholar
Tharner, A., Luijk, M. P., Raat, H., IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Moll, H. A., … Tiemeier, H. (2012). Breastfeeding and its relation to maternal sensitivity and infant attachment. Journal of Developmental and Behavioral Pediatrics, 33, 396404.CrossRefGoogle ScholarPubMed
Thompson, R. R., George, K., Walton, J. C., Orr, S. P., & Benson, J. (2006). Sex-specific influences of vasopressin on human social communication. Proceedings of the National Academy of Sciences, 103, 78897894.CrossRefGoogle ScholarPubMed
Thompson, S. M., Hammen, C., Starr, L. R., & Najman, J. M. (2014). Oxytocin receptor gene polymorphism (rs53576) moderates the intergenerational transmission of depression. Psychoneuroendocrinology, 43, 1119.CrossRefGoogle ScholarPubMed
Trainor, B. C., & Marler, C. A. (2002). Testosterone promotes paternal behaviour in a monogamous mammal via conversion to oestrogen. Proceedings of the Royal Society of London B: Biological Sciences, 269, 823829.CrossRefGoogle Scholar
Trickett, P. K., Gordis, E., Peckins, M. K., & Susman, E. J. (2014). Stress reactivity in maltreated and comparison male and female young adolescents. Child Maltreatment. Advance online publication.CrossRefGoogle ScholarPubMed
Trivers, R. L. (1972). Parental investment and sexual selection. In Sexual selection and the descent of man (pp. 136179). New York: Aldine de Gruyter.Google Scholar
Troisi, A., Frazzetto, G., Carola, V., Di Lorenzo, G., Coviello, M., Siracusano, A., & Gross, C. (2012). Variation in the μ-opioid receptor gene (OPRM1) moderates the influence of early maternal care on fearful attachment. Social Cognitive and Affective Neuroscience, 7, 542547.CrossRefGoogle ScholarPubMed
Tyrka, A., Wier, L., Price, L., Ross, N., Anderson, G., Wilkinson, C., & Carpenter, L. (2008). Childhood parental loss and adult hypothalamic-pituitary-adrenal function. Biological Psychiatry, 63, 11471154.CrossRefGoogle ScholarPubMed
Tyrka, A. R., Price, L. H., Marsit, C., Walters, O. C., & Carpenter, L. L. (2012). Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: Preliminary findings in healthy adults. PLOS ONE, 7, e30148.CrossRefGoogle ScholarPubMed
Unternaehrer, E., Luers, P., Mill, J., Dempster, E., Meyer, A., Staehli, S., … Meinlschmidt, G. (2012). Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Translational Psychiatry, 2, e150.CrossRefGoogle ScholarPubMed
Uzefovsky, F., Shalev, I., Israel, S., Edelman, S., Raz, Y., Mankuta, D., … Ebstein, R. (2015). Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67, 6065.CrossRefGoogle ScholarPubMed
van Anders, S. M., Goldey, K. L., & Kuo, P. X. (2011). The steroid/peptide theory of social bonds: Integrating testosterone and peptide responses for classifying social behavioral contexts. Psychoneuroendocrinology, 36, 12651275.CrossRefGoogle ScholarPubMed
van Anders, S. M., Tolman, R. M., & Volling, B. L. (2012). Baby cries and nurturance affect testosterone in men. Hormones and Behavior, 6, 3136.CrossRefGoogle Scholar
van Honk, J., Schutter, D. J., Bos, P. A., Kruijt, A.-W., Lentjes, E. G., & Baron-Cohen, S. (2011). Testosterone administration impairs cognitive empathy in women depending on second-to-fourth digit ratio. Proceedings of the National Academy of Sciences, 108, 34483452.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. (1995). Adult attachment representations, parental responsiveness, and infant attachment: A meta-analysis on the predictive validity of the Adult Attachment Interview. Psychological Bulletin, 117, 387.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2010). Stretched until it snaps: Attachment and close relationships. Child Development Perspectives, 4, 109111.CrossRefGoogle Scholar
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2012). A sniff of trust: Meta-analysis of the effects of intranasal oxytocin administration on face recognition, trust to in-group, and trust to out-group. Psychoneuroendocrinology, 37, 438443.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2015). The role of oxytocin in parenting and as augmentative pharmacotherapy: Critical issues and bold conjectures. Journal of Neuroendocrinology. Advance online publication.Google Scholar
van IJzendoorn, M. H., Huffmeijer, R., Alink, L. R., Bakermans-Kranenburg, M. J., & Tops, M. (2011). The impact of oxytocin administration on charitable donating is moderated by experiences of parental love-withdrawal. Frontiers in Psychology, 2.CrossRefGoogle ScholarPubMed
van Wingen, G. A., Mattern, C., Verkes, R. J., Buitelaar, J., & Fernandez, G. (2010). Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology, 35, 105113.CrossRefGoogle ScholarPubMed
Varendi, H., Porter, R. H., & Winberg, J. (2002). The effect of labor on olfactory exposure learning within the first postnatal hour. Behavioral Neuroscience, 116, 206.CrossRefGoogle ScholarPubMed
Veenema, A. (2009). Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? Frontiers in Neuroendocrinology, 30, 497518.CrossRefGoogle ScholarPubMed
Veening, J. G., de Jong, T., & Barendregt, H. P. (2010). Oxytocin-messages via the cerebrospinal fluid: Behavioral effects; a review. Physiology and Behavior, 101, 193210.CrossRefGoogle ScholarPubMed
Viau, V. (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology, 14, 506513.CrossRefGoogle ScholarPubMed
Vukojevic, V., Kolassa, I.-T., Fastenrath, M., Gschwind, L., Spalek, K., Milnik, A., … Demougin, P. (2014). Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. Journal of Neuroscience, 34, 1027410284.CrossRefGoogle ScholarPubMed
Wang, Z., Ferris, C. F., & De Vries, G. J. (1994). Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proceedings of the National Academy of Sciences, 91, 400404.CrossRefGoogle ScholarPubMed
Way, B. M., Taylor, S. E., & Eisenberger, N. I. (2009). Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proceedings of the National Academy of Sciences, 106, 1507915084.CrossRefGoogle ScholarPubMed
Weisman, O., Agerbo, E., Carter, C. S., Harris, J. C., Uldbjerg, N., Henriksen, T. B., … Dalsgaard, S. (2015). Oxytocin-augmented labor and risk for autism in males. Behavioural Brain Research, 284, 207212.CrossRefGoogle ScholarPubMed
Weisman, O., Pelphrey, K. A., Leckman, J. F., Feldman, R., Lu, Y., Chong, A., … Ebstein, R. P. (2015). The association between 2D: 4D ratio and cognitive empathy is contingent on a common polymorphism in the oxytocin receptor gene (OXTR rs53576). Psychoneuroendocrinology, 58, 2332.CrossRefGoogle ScholarPubMed
Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2012). Oxytocin administration to parent enhances infant physiological and behavioral readiness for social engagement. Biological Psychiatry, 72, 982989.CrossRefGoogle ScholarPubMed
Widom, C. S., Czaja, S. J., & DuMont, K. A. (2015). Intergenerational transmission of child abuse and neglect: Real or detection bias? Science, 347, 14801485.CrossRefGoogle ScholarPubMed
Wingenfeld, K., Kuehl, L. K., Janke, K., Hinkelmann, K., Dziobek, I., Fleischer, J., … Roepke, S. (2014). Enhanced emotional empathy after mineralocorticoid receptor stimulation in women with borderline personality disorder and healthy women. Neuropsychopharmacology, 39, 17991804.CrossRefGoogle ScholarPubMed
Wirth, M. M., & Schultheiss, O. C. (2006). Effects of affiliation arousal (hope of closeness) and affiliation stress (fear of rejection) on progesterone and cortisol. Hormones and Behavior, 50, 786795.CrossRefGoogle ScholarPubMed
Zeidan, M., Igoe, S., Linnman, C., Vitalo, A., Levine, J., Klibanski, A., … Milad, M. (2011). Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biological Psychiatry, 70, 920927.CrossRefGoogle ScholarPubMed
Zhang, T.-Y., Labonte, B., Wen, X. L., Turecki, G., & Meaney, M. J. (2013). Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology, 38, 111123.CrossRefGoogle Scholar
Zhang, T.-Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439466.CrossRefGoogle ScholarPubMed
Ziegler, T. E., Peterson, L. J., Sosa, M. E., & Barnard, A. M. (2011). Differential endocrine responses to infant odors in common marmoset (Callithrix jacchus) fathers. Hormones and Behavior, 59, 265270.CrossRefGoogle ScholarPubMed
Zilioli, S., Ponzi, D., Henry, A., Kubicki, K., Nickels, N., Wilson, M. C., & Maestripieri, D. (2016). Interest in babies negatively predicts testosterone responses to sexual visual stimuli among heterosexual young men. Psychological Science, 27, 114118.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bos supplementary material

Bos supplementary material

Download Bos supplementary material(File)
File 47.1 KB