Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T05:12:09.678Z Has data issue: false hasContentIssue false

Genetic moderation of the effects of the Family Check-Up intervention on children's internalizing symptoms: A longitudinal study with a racially/ethnically diverse sample

Published online by Cambridge University Press:  19 November 2018

Kathryn Lemery-Chalfant*
Affiliation:
Arizona State University
Sierra Clifford
Affiliation:
Arizona State University
Thomas J. Dishion
Affiliation:
Arizona State University
Daniel S. Shaw
Affiliation:
University of Pittsburgh
Melvin N. Wilson
Affiliation:
University of Virginia
*
Address correspondence and reprint requests to: Kathryn Lemery-Chalfant, Department of Psychology, P.O. Box 871104, Arizona State University, Tempe, AZ 85287; E-mail: klemery@asu.edu.

Abstract

Development involves synergistic interplay among genotypes and the physical and cultural environments, and integrating genetics into experimental designs that manipulate the environment can improve understanding of developmental psychopathology and intervention efficacy. Consistent with differential susceptibility theory, individuals can vary in their sensitivity to environmental conditions including intervention for reasons including their genotype. As a consequence, understanding genetic influences on intervention response is critical. Empirically, we tested an interaction between a genetic index representing sensitivity to the environment and the Family Check-Up intervention. Participants were drawn from the Early Steps Multisite randomized prevention trial that included a low-income and racially/ethnically diverse sample of children and their families followed longitudinally (n = 515). As hypothesized, polygenic sensitivity to the environment moderated the effects of the intervention on 10-year-old children's symptoms of internalizing psychopathology, such that children who were genetically sensitive and were randomly assigned to the intervention had fewer symptoms of child psychopathology than genetically sensitive children assigned to the control condition. A significant difference in internalizing symptoms assessed with a clinical interview emerged between the intervention and control groups for those 0.493 SD above the mean on polygenic sensitivity, or 25% of the sample. Similar to personalized medicine, it is time to understand individual and sociocultural differences in treatment response and individualize psychosocial interventions to reduce the burden of child psychopathology and maximize well-being for children growing up in a wide range of physical environments and cultures.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by National Institute on Drug Abuse Grants DA022773, DA023245, and DA036832. Special thanks to the staff and students for their dedication to the Early Steps Multisite Study, and the participating families who generously shared their experiences.

References

Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Developmental Psychopathology, 23, 3952. doi:10.1017/ S0954579410000635Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene-environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409. doi:10.1146/annurev-psych-010814-015407Google Scholar
Beauchaine, T. P., & Cicchetti, D. (2016). A new generation of comorbidity research in the era of neuroscience and research domain criteria. Development and Psychopathology, 28, 891894. doi:10.1017/S0954579416000602Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. doi:10.1037/a0017376Google Scholar
Brody, G. H., Beach, S. R., Chen, Y. F., Obasi, E., Philibert, R. A., Kogan, S. M., & Simons, R. L. (2011). Perceived discrimination, serotonin transporter linked polymorphic region status, and the development of conduct problems. Development and Psychopathology, 23, 617627. doi:10.1017/S0954579411000046Google Scholar
Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101, 568586. doi:10.1037/0033-295X.101.4.568Google Scholar
Burt, S. A. (2009). Rethinking environmental contributions to child and adolescent psychopathology: A meta-analysis of shared environmental influences. Psychological Bulletin, 135, 608637. doi:10.1037/a0015702Google Scholar
Causadias, J. M. (2013). A roadmap for the integration of culture into developmental psychopathology. Development and Psychopathology, 25, 13751398. doi:10.1017/S0954579413000679Google Scholar
Causadias, J. M., Telzer, E. H., & Gonzales, N. A. (2018). Introduction to culture and biology interplay. In Causadias, J. M., Telzer, E. H., & Gonzales, N. A. (Eds.), The handbook of culture and biology (pp. 329). New York: Wiley.Google Scholar
Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science, 24, 304312. doi:10.1177/0963721415580430Google Scholar
Clifford, S., & Lemery-Chalfant, K. (2015). Molecular genetics of resilience. In Pluess, M. (Ed.), Genetics of psychological well-being: The role of heritability and genetics in positive psychology (pp. 177192). Oxford: Oxford University Press.Google Scholar
Cohen, A. B. (2009). Many forms of culture. American Psychologist, 64, 194204. doi:10.1037/a0015308Google Scholar
Connell, A. M., & Dishion, T. J. (2017). Long-term effects of the Family Check-Up in public secondary school on diagnosed major depressive disorder in adulthood. Journal of Youth and Adolescence, 46, 570581. doi:10.1007/s10964-016-0482-6Google Scholar
Crnic, K. A., & Greenberg, M. T. (1990). Minor parenting stresses with young children. Child Development, 61, 16281637. doi:10.1111/j.1467-8624.1990.tb02889.xGoogle Scholar
Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 1629. doi:10.1037/1082-989X.1.1.16Google Scholar
Dick, D. M., Barr, P. B., Cho, S. B., Cooke, M. E., Kuo, S. I., Lewis, T. J., … Su, J. (2017). Post-GWAS in psychiatric genetics: A developmental perspective on the “other” next steps. Genes, Brain and Behavior. Advance online publication. doi:10.1111/gbb.12447Google Scholar
Dishion, T. J., Brennan, L. M., Shaw, D. S., McEachern, A. D., Wilson, M. N., & Jo, B. (2014). Prevention of problem behavior through annual family check-ups in early childhood: Intervention effects from home to early elementary school. Journal of Abnormal Child Psychology, 42, 343354. doi:10.1007/s10802-013-9768-2Google Scholar
Dishion, T. J., Kavanagh, K., Schneiger, A., Nelson, S., & Kaufman, N. K. (2002). Preventing early adolescent substance use: A family-centered strategy for the public middle school. Prevention Science, 3, 191201. doi:10.1023/A:1019994500301Google Scholar
Dishion, T. J., Shaw, D., Connell, A., Gardner, F., Weaver, C., & Wilson, M. (2008). The Family Check-Up with high-risk indigent families: Preventing problem behavior by increasing parents’ positive behavior support in early childhood. Child Development, 79, 13951414. doi:10.1111/j.1467-8624.2008.01195.xGoogle Scholar
Dishion, T. J., & Stormshak, E. (2007). Intervening in children's lives: An ecological, family-centered approach to mental health care. Washington, DC: American Psychological Association.Google Scholar
Dodge, K. A., Pettit, G. S., & Bates, J. E. (1994). Socialization mediators of the relation between socioeconomic status and child conduct problems. Child Development, 65, 649665. doi:10.2307/1131407Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.2307/1131407Google Scholar
Emmelkamp, P. M., & Wittchen, H. U. (2009). Specific phobias. In Andrews, G., Charney, D. S., Sirovatka, P. J., & Regier, D. A. (Eds.), Stress-induced and fear circuitry disorders. Refining the research Agenda for DSM-V (pp. 77101). Arlington, VA: American Psychological Association.Google Scholar
Harold, G. T., Rice, F., Hay, D. F., Boivin, J., van Den Bree, M., & Thapar, A. (2011). Familial transmission of depression and antisocial behavior symptoms: Disentangling the contribution of inherited and environmental factors and testing the mediating role of parenting. Psychological Medicine, 41, 11751185. doi:10.1017/S0033291710001753Google Scholar
Haworth, C. M., Davis, O. S., & Plomin, R. (2013). Twins Early Development Study (TEDS): A genetically sensitive investigation of cognitive and behavioral development from childhood to young adulthood. Twin Research and Human Genetics, 16, 117125. doi:10.1017/thg.2012.91Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33, 6183. doi:10.1017/S0140525X0999152XGoogle Scholar
Holden, M., Deng, S., Wojnowski, L., & Kulle, B. (2008). GSEA-SNP: Applying gene set enrichment analysis to SNP data from genome-wide association studies. Bioinformatics, 24, 27842785. doi:10.1016/j.ygeno.2011.04.006Google Scholar
International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931. doi:10.1038/nature03001Google Scholar
Ioannidis, J. P. (2005). Why most published research findings are false. PLOS Medicine, 2, e124. doi:10.1371/journal.pmed.0020124Google Scholar
Keers, R., Coleman, J. R., Lester, K. J., Roberts, S., Breen, G., Thastum, M., … Nauta, M. (2016). A genome-wide test of the differential susceptibility hypothesis reveals a genetic predictor of differential response to psychological treatments for child anxiety disorders. Psychotherapy and Psychosomatics, 85, 146158. doi:10.1159/000444023Google Scholar
Keller, M. C. (2014). Gene × Environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824. doi:10.1016/j.biopsych.2013.09.006Google Scholar
Kendler, K. S., Thornton, L. M., & Pedersen, N. L. (2000). Tobacco consumption in Swedish twins reared apart and reared together. Archives of General Psychiatry, 57, 886892. doi:10.1001/archpsyc.57.9.886Google Scholar
Lemery, K. S., & Goldsmith, H. H. (1999). Genetically informative designs for the study of behavioural development. International Journal of Behavioral Development, 23, 293317. doi:10.1080/016502599383838Google Scholar
Lemery-Chalfant, K., Kao, K., Swann, G., & Goldsmith, H. H. (2013). Childhood temperament: Passive gene–environment correlation, gene–environment interaction, and the hidden importance of the family environment. Development and Psychopathology, 25, 5163. doi:10.1017/S0954579412000892Google Scholar
Lunkenheimer, E. S., Dishion, T. J., Shaw, D. S., Connell, A. M., Gardner, F., Wilson, M. N., & Skuban, E. M. (2008). Collateral benefits of the family check-up on early childhood school readiness: Indirect effects of parents' positive behavior support. Developmental Psychology, 44, 17371752. doi:10.1037/a0013858Google Scholar
McDonough-Caplan, H., Klein, D. N., & Beauchaine, T. P. (2018). Comorbidity and continuity of depression and conduct problems from elementary school to adolescence. Journal of Abnormal Psychology, 127, 326337. doi:10.1037/abn0000339Google Scholar
McGoldrick, M., & Hardy, K. V. (Eds.) (2008). Re-visioning family therapy: Race, culture, and gender in clinical practice. New York: Guilford Press.Google Scholar
Middeldorp, C. M., Cath, D. C., Van Dyck, R., & Boomsma, D. I. (2005). The co-morbidity of anxiety and depression in the perspective of genetic epidemiology. A review of twin and family studies. Psychological Medicine, 35, 611624. doi:10.1017/S003329170400412XGoogle Scholar
Moilanen, K. L., Shaw, D. S., & Maxwell, K. L. (2010). Developmental cascades: Externalizing, internalizing, and academic competence from middle childhood to early adolescence. Development and Psychopathology, 22, 635653. doi:10.1017/S0954579410000337.Google Scholar
Musci, R. J., Fairman, B., Masyn, K. E., Uhl, G., Maher, B., Sisto, D. Y., … Ialongo, N. S. (2018). Polygenic Score × Intervention Moderation: An application of discrete-time survival analysis to model the timing of first marijuana use among urban youth. Prevention Science, 19, 614. doi:10.1007/s11121-016-0729-1Google Scholar
Musci, R. J., Masyn, K. E., Uhl, G., Maher, B., Kellam, S. G., & Ialongo, N. S. (2015). Polygenic Score × Intervention Moderation: An application of discrete-time survival analysis to modeling the timing of first tobacco use among urban youth. Development and Psychopathology, 27, 111122. doi:10.1017/S0954579414001333Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2015). Mplus user's guide: Statistical analysis with latent variables (Version 7.4). Los Angeles: Author.Google Scholar
Oliver, B. R., Trzaskowski, M., & Plomin, R. (2014). Genetics of parenting: The power of the dark side. Developmental Psychology, 50, 12331240. doi:10.1037/a0035388Google Scholar
Oquendo, M. A., Canino, G., Lehner, T., & Licinio, J. (2010). Genetic repositories for the study of major psychiatric conditions: What do we know about ethnic minorities' genetic vulnerability? Molecular Psychiatry, 15, 970975. doi:10.1038/mp.2010.11Google Scholar
Patterson, G. R., Reid, J. B., & Dishion, T. J. (1992). Antisocial boys (Vol. 4). Eugene, OR: Castalia.Google Scholar
Pianta, R. C., Steinberg, M. S., & Rollins, K. B. (1995). The first two years of school: Teacher child relationships and deflections in children's classroom adjustment. Development and Psychopathology, 7, 295312. doi:10.1017/S0954579400006519Google Scholar
Pinquart, M. (2017). Associations of parenting dimensions and styles with externalizing problems of children and adolescents: An updated meta-analysis. Developmental Psychology, 53, 873932. doi:10.1037/dev0000295Google Scholar
Plomin, R., & Daniels, D. (1987). Why are children in the same family so different from one another? Behavioral and Brain Sciences, 10, 160. doi:10.1093/ije/dyq148Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84, 309322. doi:10.1037/0033-2909.84.2.309Google Scholar
Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709. doi:10.1038/ng.3285Google Scholar
Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. Nature News, 538, 161164. doi:10.1038/538161aGoogle Scholar
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31, 437448. doi:10.3102/10769986031004437Google Scholar
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401. doi:10.1177/014662167700100306Google Scholar
Rende, R., & Plomin, R. (1992). Diathesis–stress models of psychopathology: A quantitative genetic perspective. Applied and Preventative Psychology, 1, 177182. doi:10.1016/S0962-1849(05)80123-4Google Scholar
Reuben, J. D., Shaw, D. S., Brennan, L. M., Dishion, T. J., & Wilson, M. N. (2015). A family-based intervention for improving children's emotional problems through effects on maternal depressive symptoms. Journal of Consulting and Clinical Psychology, 83, 11421148. doi:10.1037/ccp0000049Google Scholar
Roalf, D. R., & Gur, R. C. (2017). Functional brain imaging in neuropsychology over the past 25 years. Neuropsychology, 31, 954971. doi:10.1037/neu0000426Google Scholar
Robinson, E. A., Eyberg, S. M., & Ross, A. W. (1980). The standardization of an inventory of child conduct problem behaviors. Journal of Clinical Child and Adolescent Psychology, 9, 2228. doi:10.1080/15374418009532938Google Scholar
Scarr, S. (1992). Developmental theories for the 1990s: Development and individual differences. Child Development, 63, 119. doi:10.1111/j.1467-8624.1992.tb03591.xGoogle Scholar
Schwartz, J. A., & Beaver, K. M. (2011). Evidence of a gene × environment interaction between perceived prejudice and MAOA genotype in the prediction of criminal arrests. Journal of Criminal Justice, 39, 378384. doi:10.1016/j.jcrimjus.2011.05.003Google Scholar
Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children, Version IV (NIMH DISC-IV): Description, differences from previous versions and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 28Y38. doi:10.1097/00004583-200001000-00014Google Scholar
Shaffer, D., Fisher, P. I., Lucas, C., & NIMH DISC Editorial Board. (1998). Diagnostic Interview Schedule for Children, Version IV. New York: Columbia University, Division of Psychiatry.Google Scholar
Shanahan, M. J., & Hofer, S. M. (2005). Social context in gene -environment interactions: Retrospect and prospect. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60, 6576. doi:10.1093/geronb/60.Special_Issue_1.65Google Scholar
Shaw, D. S., Connell, A., Dishion, T. J., Wilson, M. N., & Gardner, F. (2009). Improvements in maternal depression as a mediator of intervention effects on early childhood problem behavior. Development and Psychopathology, 21, 417439. doi:10.1017/S0954579409000236Google Scholar
Shaw, D. S., Dishion, T. J., Supplee, L., Gardner, F., & Arnds, K. (2006). Randomized trial of a family-centered approach to the prevention of early conduct problems: 2-year effects of the Family Check-Up in early childhood. Journal of Consulting and Clinical Psychology, 74, 19. doi:10.1037/0022-006X.74.1.1Google Scholar
Shaw, D. S., Sitnick, S. L., Brennan, L. M., Choe, D. E., Dishion, T. J., Wilson, M. N., & Gardner, F. (2017). The long-term effectiveness of the Family Check-Up on school-age conduct problems: Moderation by neighborhood deprivation. Development and Psychopathology, 28, 14711486. doi:10.1017/S0954579415001212Google Scholar
Smith, J. D., Berkel, C., Hails, K. A., Dishion, T. J., Shaw, D. S., & Wilson, M. N. (2017). Predictors of participation in the Family Check-Up program: A randomized trial of yearly services from age 2 to 10 years. Prevention Science, 88, 427435. doi:10.1007/s11121-016-0679-7Google Scholar
Smith, J. D., Knoble, N. B., Zerr, A. A., Dishion, T. J., & Stormshak, E. A. (2014). Family Check-Up effects across diverse ethnic groups: Reducing early-adolescence antisocial behavior by reducing family conflict. Journal of Clinical Child and Adolescent Psychology, 43, 400414. doi:10.1080/15374416.2014.888670Google Scholar
Stormshak, E. A., Connell, A. M., Véronneau, M. H., Myers, M. W., Dishion, T. J., Kavanagh, K., & Caruthers, A. S. (2011). An ecological approach to promoting early adolescent mental health and social adaptation: Family-centered intervention in public middle schools. Child Development, 82, 209225. doi:10.1111/j.1467-8624.2010.01551.xGoogle Scholar
Stormshak, E. A., Fosco, G. M., & Dishion, T. J. (2010). Implementing interventions with families in schools to increase youth school engagement: The Family Check-Up model. School Mental Health, 2, 8292. doi:10.1007/s12310-009-9025-6Google Scholar
Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160164. doi:10.1111/1467-8721.00084Google Scholar
Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623628. doi:10.1111/1467-8721.00084Google Scholar
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147. doi:10.1038/tp.2012.73Google Scholar
Van Ryzin, M. J., Stormshak, E. A., & Dishion, T. J. (2012). Engaging parents in the Family Check-Up in middle schools: Longitudinal effects through the transition to high school. Journal of Adolescent Health, 50, 627633. doi:10.1016/j.jadohealth.2011.10.255Google Scholar
Zheng, Y., Rijsdijk, F., Pingault, J. B., McMahon, R. J., & Unger, J. B. (2016). Developmental changes in genetic and environmental influences on Chinese child and adolescent anxiety and depression. Psychological Medicine, 46, 18291838. doi:10.1017/S0033291716000313Google Scholar
Zvara, B. J., Sheppard, K. W., & Cox, M. (2018). Bidirectional effects between parenting sensitivity and child behavior: A cross-lagged analysis across middle childhood and adolescence. Journal of Family Psychology, 32, 484495. doi:10.1037/fam0000372Google Scholar