Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T09:10:55.159Z Has data issue: false hasContentIssue false

Harshness and unpredictability: Childhood environmental links with immune and asthma outcomes

Published online by Cambridge University Press:  20 December 2021

Phoebe H. Lam*
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
Gregory E. Miller
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
Lauren Hoffer
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
Rebekah Siliezar
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
Johanna Dezil
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
Amanda McDonald
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
Edith Chen
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA Institute for Policy Research, Northwestern University, Evanston, IL, USA
*
Corresponding author: Phoebe H. Lam, email: phoebelam@u.northwestern.edu

Abstract

The environment has pervasive impacts on human development, and two key environmental conditions – harshness and unpredictability – are proposed to be instrumental in tuning development. This study examined (1) how harsh and unpredictable environments related to immune and clinical outcomes in the context of childhood asthma, and (2) whether there were independent associations of harshness and unpredictability with these outcomes. Participants were 290 youth physician-diagnosed with asthma. Harshness was assessed with youth-reported exposure to violence and neighborhood-level murder rate. Unpredictability was assessed with parent reports of family structural changes. Youth also completed measures of asthma control as well as asthma quality of life and provided blood samples to assess immune profiles, including in vitro cytokine responses to challenge and sensitivity to inhibitory signals from glucocorticoids. Results indicated that harshness was associated with more pronounced pro-inflammatory cytokine production following challenge and less sensitivity to the inhibitory properties of glucocorticoids. Furthermore, youth exposed to harsher environments reported less asthma control and poorer quality of life. All associations with harshness persisted when controlling for unpredictability. No associations between unpredictability and outcomes were found. These findings suggest that relative to unpredictability, harshness may be a more consistent correlate of asthma-relevant immune and clinical outcomes.

Type
Special Issue Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacharier, L. B., Strunk, R. C., Mauger, D., White, D., Lemanske, R. F., & Sorkness, C. A. (2004). Classifying asthma severity in children—Mismatch between symptoms, medication use, and lung function. American Journal of Respiratory and Critical Care Medicine, 170(4), 426432. https://doi.org/10.1164/rccm.200308-1178OC CrossRefGoogle ScholarPubMed
Barnes, P. J. (2001). Th2 cytokines and asthma: An introduction. Respiratory Research, 2(2), 12.Google ScholarPubMed
Bellin, M. H., Osteen, P., Kub, J., Bollinger, M. E., Tsoukleris, M., Chaikind, L.Butz, A. M. (2015). Stress and quality of life in urban caregivers of children with poorly controlled asthma: A longitudinal analysis. Journal of Pediatric Health Care, 29(6), 536546.CrossRefGoogle ScholarPubMed
Belsky, J., Schlomer, G. L., & Ellis, B. J. (2012). Beyond cumulative risk: Distinguishing harshness and unpredictability as determinants of parenting and early life history strategy. Developmental Psychology, 48(3), 662673.CrossRefGoogle ScholarPubMed
Benschop, R. J., Rodriguez-Feuerhahn, M., & Schedlowski, M. (1996). Catecholamine-induced leukocytosis: Early observations, current research, and future directions. Brain, Behavior, and Immunity, 10(2), 7791.CrossRefGoogle ScholarPubMed
Brumbach, B. H., Figueredo, A. J., & Ellis, B. J. (2009). Effects of harsh and unpredictable environments in adolescence on development of life history strategies. Human Nature, 20(1), 2551.CrossRefGoogle ScholarPubMed
Brusselle, G. G., Maes, T., & Bracke, K. R. (2013). Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nature Medicine, 19(8), 977979.CrossRefGoogle ScholarPubMed
Chen, E., Chim, L. S., Strunk, R. C., & Miller, G. E. (2007). The role of the social environment in children and adolescents with asthma. American Journal of Respiratory and Critical Care Medicine, 176(7), 644649. https://doi.org/10.1164/rccm.200610-1473OC CrossRefGoogle ScholarPubMed
Chen, E., Hanson, M. D., Paterson, L. Q., Griffin, M. J., Walker, H. A., & Miller, G. E. (2006). Socioeconomic status and inflammatory processes in childhood asthma: The role of psychological stress. Journal of Allergy and Clinical Immunology, 117(5), 10141020. https://doi.org/10.1016/j.jaci.2006.01.036 CrossRefGoogle ScholarPubMed
Chen, E., Hayen, R., Le, V., Austin, M. K., Shalowitz, M. U., Story, R. E.Miller, G. E. (2019). Neighborhood social conditions, family relationships, and childhood asthma. Pediatrics, 144(2), e20183300.CrossRefGoogle ScholarPubMed
Chen, E., Miller, G. E., Shalowitz, M. U., Story, R. E., Levine, C. S., Hayen, R.Brauer, M. (2017). Difficult family relationships, residential greenspace, and childhood asthma. Pediatrics, 139(4), e20163056. https://doi.org/10.1542/peds.2016-3056 CrossRefGoogle ScholarPubMed
Chowdhury, F., Williams, A., & Johnson, P. (2009). Validation and comparison of two multiplex technologies, Luminex® and Mesoscale Discovery, for human cytokine profiling. Journal of Immunological Methods, 340(1), 5564.CrossRefGoogle Scholar
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764.CrossRefGoogle ScholarPubMed
Danesh, J., Kaptoge, S., Mann, A. G., Sarwar, N., Wood, A. G., Angleman, S. B.Eiriksdottir, G. (2008). Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review. PLoS Medicine, 5(4), e78.CrossRefGoogle ScholarPubMed
Danesh, J., Whincup, P., Walker, M., Lennon, L., Thomson, A., Appleby, P.Pepys, M. B. (2000). Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ, 321(7255), 199204.CrossRefGoogle ScholarPubMed
Dhabhar, F. S., Miller, A. H., McEwen, B. S., & Spencer, R. L. (1995). Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. The Journal of Immunology, 154(10), 55115527.Google ScholarPubMed
Ehrlich, K. B., Miller, G. E., Shalowitz, M., Story, R., Levine, C. S., Williams, D.Chen, E. (2018). Secure base representations in children with asthma: Links with symptoms, family asthma management, and cytokine regulation. Child Development, 90(6),e718e728.Google ScholarPubMed
Ehrlich, K. B., Ross, K. M., Chen, E., & Miller, G. E. (2016). Testing the biological embedding hypothesis: Is early life adversity associated with a later proinflammatory phenotype? Development and Psychopathology, 28(4pt2), 12731283. https://doi.org/10.1017/S0954579416000845 CrossRefGoogle ScholarPubMed
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk. Human Nature, 20(2), 204268.CrossRefGoogle ScholarPubMed
ESRI 2018). Windows. ESRI, Redlands, CA, USA.Google Scholar
Finn, P. W., & Bigby, T. D. (2009). Innate immunity and asthma. Proceedings of the American Thoracic Society, 6(3), 260265.CrossRefGoogle ScholarPubMed
Gassen, J., Prokosch, M. L., Eimerbrink, M. J., Leyva, R. P. P., White, J. D., Peterman, J. L.Nicolas, S. C. (2019). Inflammation predicts decision-making characterized by impulsivity, present focus, and an inability to delay gratification. Scientific Reports, 9(1), 110.CrossRefGoogle Scholar
Graham, N., Arai, M., Hagströmer, B., & Graham, M. N.. Package ‘multiwayvcov.’. 2016.Google Scholar
Hartman, S., Sung, S., Simpson, J. A., Schlomer, G. L., & Belsky, J. (2018). Decomposing environmental unpredictability in forecasting adolescent and young adult development: A two-sample study. Development and Psychopathology, 30(4), 13211332.CrossRefGoogle Scholar
Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987995.CrossRefGoogle ScholarPubMed
Juniper, E. F., Guyatt, G. H., Feeny, D. H., Ferrie, P., Griffith, L. E., & Townsend, M. (1996). Measuring quality of life in children with asthma. Quality of Life Research, 5(1), 3546.CrossRefGoogle ScholarPubMed
Klinnert, M. D., Nelson, H. S., Price, M. R., Adinoff, A. D., Leung, D. Y. M., & Mrazek, D. A. (2001). Onset and persistence of childhood asthma: Predictors from infancy. Pediatrics, 108(4), e69. https://doi.org/10.1542/peds.108.4.e69 CrossRefGoogle ScholarPubMed
Le Souëf, P. N., Goldblatt, J., & Lynch, N. R. (2000). Evolutionary adaptation of inflammatory immune responses in human beings. The Lancet, 356(9225), 242244.CrossRefGoogle ScholarPubMed
McDade, T. W. (2005). Life history, maintenance, and the early origins of immune function. American Journal of Human Biology, 17(1), 8194.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience & Biobehavioral Reviews, 47(1), 578591.CrossRefGoogle ScholarPubMed
Miller, G. E., & Chen, E. (2010). Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science, 21(6), 848856. https://doi.org/10.1177/0956797610370161 CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137(6), 959997.CrossRefGoogle Scholar
Nathan, C., & Ding, A. (2010). Nonresolving inflammation. Cell, 140(6), 871882.CrossRefGoogle ScholarPubMed
Nathan, R. A., Sorkness, C. A., Kosinski, M., Schatz, M., Li, J. T., Marcus, P.Pendergraft, T. B. (2004). Development of the asthma control test: A survey for assessing asthma control. Journal of Allergy and Clinical Immunology, 113(1), 5965. https://doi.org/10.1016/j.jaci.2003.09.008 CrossRefGoogle ScholarPubMed
Pearson, T. A., Mensah, G. A., Alexander, R. W., Anderson, J. L., Cannon III, R. O., Criqui, M.Myers, G. L. (2003). Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation, 107(3), 499511.CrossRefGoogle Scholar
Rauw, W. M. (2012). Immune response from a resource allocation perspective. Frontiers in Genetics, 3, 267.CrossRefGoogle ScholarPubMed
Schreier, H., & Chen, E. (2010). Longitudinal relationships between family routines and biological profiles among youth with asthma. Health Psychology, 29(1), 8290.CrossRefGoogle ScholarPubMed
Segerstrom, S. C. (2010). Resources, stress, and immunity: An ecological perspective on human psychoneuroimmunology. Annals of Behavioral Medicine, 40(1), 114125.CrossRefGoogle ScholarPubMed
Simpson, J. A., Griskevicius, V., Kuo, S. I., Sung, S., & Collins, W. A. (2012). Evolution, stress, and sensitive periods: The influence of unpredictability in early versus late childhood on sex and risky behavior. Developmental Psychology, 48(3), 674686.CrossRefGoogle ScholarPubMed
Spellberg, B., & Edwards, J. E. Jr (2001). Type 1/Type 2 immunity in infectious diseases. Clinical Infectious Diseases, 32(1), 76102.CrossRefGoogle ScholarPubMed
Suarez, C. J., Parker, N. J., & Finn, P. W. (2008). Innate immune mechanism in allergic asthma. Current Allergy and Asthma Reports, 8(5), 451459.CrossRefGoogle ScholarPubMed
Suglia, S. F., Enlow, M. B., Kullowatz, A., & Wright, R. J. (2009). Maternal intimate partner violence and increased asthma incidence in children: Buffering effects of supportive caregiving. Archives of Pediatrics & Adolescent Medicine, 163(3), 244250.CrossRefGoogle ScholarPubMed
Szepsenwol, O., Griskevicius, V., Simpson, J. A., Young, E. S., Fleck, C., & Jones, R. E. (2017). The effect of predictable early childhood environments on sociosexuality in early adulthood. Evolutionary Behavioral Sciences, 11(2), 131145.CrossRefGoogle Scholar
RStudio Team (2018). RStudio: Integrated development for R (1.2.1335) [Computer software]. RStudio, Inc., Boston, MA, http://www.rstudio.com/Google Scholar
Thakur, N., Martin, M., Castellanos, E., Oh, S. S., Roth, L. A., Eng, C.LeNoir, M. A. (2014). Socioeconomic status and asthma control in African American youth in SAGE II. Journal of Asthma, 51(7), 720728.CrossRefGoogle ScholarPubMed
Thomson, C. C., Roberts, K., Curran, A., Ryan, L., & Wright, R. J. (2002). Caretaker-child concordance for child’s exposure to violence in a preadolescent inner-city population. Archives of Pediatrics & Adolescent Medicine, 156(8), 818823.CrossRefGoogle Scholar
Wang, Z.-Y., Hu, M., Yu, T.-L., & Yang, J. (2019). The relationship between childhood maltreatment and risky sexual behaviors: A meta-analysis. International Journal of Environmental Research and Public Health, 16(19), 3666.CrossRefGoogle ScholarPubMed
Weinstein, S. M., Pugach, O., Rosales, G., Mosnaim, G. S., Walton, S. M., & Martin, M. A. (2019). Family chaos and asthma control. Pediatrics, 144(2), e20182758.CrossRefGoogle ScholarPubMed
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 48(4), 817838.CrossRefGoogle Scholar
Wilson, M., & Daly, M. (1997). Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. BMJ, 314(7089), 1271.CrossRefGoogle ScholarPubMed
Yang, I. A., Fong, K. M., Holgate, S. T., & Holloway, J. W. (2006). The role of Toll-like receptors and related receptors of the innate immune system in asthma. Current Opinion in Allergy and Clinical Immunology, 6(1), 2328.CrossRefGoogle ScholarPubMed
Young, E. S., Frankenhuis, W. E., & Ellis, B. J. (2020). Theory and measurement of environmental unpredictability. Evolution and Human Behavior, 41(6), 550556.CrossRefGoogle Scholar
Zeileis, A., Lumley, T., Berger, S., Graham, N., & Zeileis, M. A.. Package ‘sandwich’. R Package Version, 2.5-1. 2019.Google Scholar
Supplementary material: File

Lam et al. supplementary material

Lam et al. supplementary material

Download Lam et al. supplementary material(File)
File 24.9 KB