Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T06:04:29.879Z Has data issue: false hasContentIssue false

The influence of harshness and unpredictability on female sexual development: Addressing gene–environment interplay using a polygenic score

Published online by Cambridge University Press:  23 December 2021

Gabriel L. Schlomer*
Affiliation:
Division of Educational Psychology and Methodology, University at Albany, SUNY, Albany, NY, USA
Qi Sun
Affiliation:
Division of Educational Psychology and Methodology, University at Albany, SUNY, Albany, NY, USA
*
Corresponding author. Gabriel L. Schlomer, email: Gschlomer@albany.edu

Abstract

Recent developments in the application life history theory to human development indicate two fundamental dimension of the early environment – harshness and unpredictability – are key regulators life history strategies. Few studies have examined the manner with which these dimensions influence development, though age at menarche (AAM) and age at first sexual intercourse have been proposed as possible mechanisms among women. Data from the Avon Longitudinal Study of Parents and Children (N = 3,645) were used to examine direct and indirect effects of harshness (financial difficulties) and unpredictability (paternal transitions) on lifetime and past year sexual partners during adolescence and young adulthood. Genetic confounding was addressed using an AAM polygenic score (PGS) and potential gene-by-environment interactions were also evaluated using the PGS. Path model results showed only harshness was directly related to AAM. Harshness, unpredictability, and AAM were indirectly related to lifetime and past year sexual partner number via age at first sexual intercourse. The PGS did not account for any of the associations and no significant interactions were detected. Implications of these results for developmental models derived from life history theory are discussed as well as the role of PGSs in gene–environment interplay research.

Type
Special Issue Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baams, L., Dubas, J. S., Overbeek, G., & van Aken, M. A. (2015). Transitions in body and behavior: A meta-analytic study on the relationship between pubertal development and adolescent sexual behavior. Journal of Adolescent Health, 56, 586598. https://doi.org/10.1016/j.jadohealth.2014.11.019 CrossRefGoogle Scholar
Barbaro, N., Boutwell, B., Barnes, J. C., & Shackelford, T. K. (2017). Genetic confounding of the relationship between father absence and age at menarche. Evolution and Human Behavior, 38(3), 357365.CrossRefGoogle Scholar
Belsky, D. W., & Israel, S. (2014). Integrating genetics and social science: Genetic risk scores. Biodemography and Social Biology, 60(2), 137155. https://doi.org/10.1080/19485565.2014.946591 CrossRefGoogle ScholarPubMed
Belsky, J. (1993). Etiology of child maltreatment: A developmental ecological analysis. Psychological Bulletin, 114, 413434. https://doi.org/10.1037/0033-2909.114.3.413 CrossRefGoogle ScholarPubMed
Belsky, J., Schlomer, G. L., & Ellis, B. J. (2012). Beyond cumulative risk: Distinguishing harshness and unpredictability as determinants of parenting and early life history strategy. Deveopmental Psychology, 48, 662673. https://doi.org/10.1037/a0024454 CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62(4), 647670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.x CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., Houts, R. M., & Halpern-Felsher, B. L. (2010). The development of reproductive strategy in females: Early maternal harshness→ earlier menarche→ increased sexual risk taking. Developmental Psychology, 46(1), 120128.CrossRefGoogle ScholarPubMed
Bingham, C. R., & Crockett, L. J. (1996). Longitudinal adjustment patterns of boys and girls experiencing early, middle, and late sexual intercourse. Developmental Psychology, 32(4), 647658.CrossRefGoogle Scholar
Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., Molloy, L., Ness, A., Ring, S., & Davey Smith, G. (2013). Cohort Profile: The ‘children of the 90s’--the index offspring of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology, 42(1), 111127. https://doi.org/10.1093/ije/dys064 CrossRefGoogle ScholarPubMed
Cardon, L. R., & Palmer, L. J. (2003). Population stratification and spurious allelic association. Lancet, 361(9357), 598604.CrossRefGoogle ScholarPubMed
Carlson, M. D., Mendle, J., & Harden, K. P. (2014). Early adverse environments and genetic influences on age at first sex: Evidence for gene x environment interaction. Developmental Psychology, 50(5), 15321542. https://doi.org/10.1037/a0035479 CrossRefGoogle ScholarPubMed
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245276.CrossRefGoogle ScholarPubMed
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7. https://doi.org/10.1186/s13742-015-0047-8 CrossRefGoogle Scholar
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experience of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764. https://doi.org/10.1037/bul0000270 CrossRefGoogle Scholar
Culpin, I., Heron, J., Araya, R., Melotti, R., Lewis, G., & Joinson, C. (2014). Father absence and timing of menarche in adolescent girls from a UK cohort: The mediating role of maternal depression and major financial problems. Journal of Adolescence, 37(3), 291301. https://doi.org/10.1016/j.adolescence.2014.02.003 CrossRefGoogle ScholarPubMed
D’Agostino, R. B., & Russell, H. K. (2005). Scree test. In Armitage, P., & Colton, T. (Eds.), Encyclopedia of biostatistics (2nd. John Wiley & Sons Chichester, England Google Scholar
Day, F. R., Thompson, D. J., Helgason, H., Chasman, D. I., Finucane, H., Sulem, P., Ruth, K. S., Whalen, S., Sarkar, A., Albrecht, E., Altmaier, E., Amini, M., Barbieri, C. M., Boutin, T., Campbell, A., Demerath, E., Giri, A., He, C., Hottenga, J. J., Karlsson, R.Perry, J. R. B. (2017). Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 49(6), 834841. https://doi.org/10.1038/ng.3841 CrossRefGoogle ScholarPubMed
Deardorff, J., Gonzales, N. A., Christopher, S., Roosa, M. W., & Millsap, R. E. (2005). Early puberty and adolescent pregnancy: The influence of alcohol use. Pediatrics, 116(6), 14511456. https://doi.org/10.1542/peds.2005-0542 CrossRefGoogle ScholarPubMed
Debiasi, E., & Dribe, M. (2020). SES inequalities in casue-specific adult mortality: A study of the long-term trends using longitudinal data for Sweden (1813-2014. European Journal of Epidemiology, 35, 10431056. https://doi.org/10.1007/s10654-020-00685-6 CrossRefGoogle ScholarPubMed
Del Giudice, M. (2020). Rethinking the fast-slow continuum of individual differences. Evolution and Human Behavior, 41(6), 536549. https://doi.org/10.1016/j.evolhumbehav.2020.05.004 CrossRefGoogle Scholar
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., Hewitt, J. K., Kendler, K. S., & Sher, K. J. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10(1), 3759. https://doi.org/10.1177/1745691614556682 CrossRefGoogle ScholarPubMed
Doom, J. R., Vanzomeren-Dohm, A. A., & Simpson, J. A. (2016). Early unpredictability predicts increased adolescent externalizing behaviors and substance use: A life history perspective. Development and Psychopathology, 28, 15051516. https://doi.org/10.1017/S0954579415001169 CrossRefGoogle ScholarPubMed
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9(3), e1003348. https://doi.org/10.1371/journal.pgen.1003348 CrossRefGoogle ScholarPubMed
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130(6), 920958. https://doi.org/10.1037/0033-2909.130.6.920 CrossRefGoogle ScholarPubMed
Ellis, B. J., & Del Giudice, M. (2019). Developmental adaptation to stress: An evolutionary perspective. Annual Review of Psychology, 70, 111139. https://doi.org/10.1146/annurev-psych-122216-011732 CrossRefGoogle Scholar
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk: The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20, 204268. https://doi.org/10.1007/s12110-009-9063-7 CrossRefGoogle ScholarPubMed
Ellis, B. J., Schlomer, G. L., Tilley, L., & Butler, E. A. (2012). The impact of fathers on risky sexual behavior in daughters: A genetically and environmentally controlled sibling study. Development and Psychopathology, 24(1), 317332.CrossRefGoogle ScholarPubMed
Elo, I. T. (2009). Social class differentials in health and mortality: Patterns and explanation in comparative perspective. Annual Review of Sociology, 35, 553572. https://doi.org/10.1146/annurev-soc-070308-115929 CrossRefGoogle Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinbergh, 53, 399433.Google Scholar
Foster, H., Brooks-Gunn, J., & Martin, A. (2007). Poverty/socioeconomic status and exposure to violence in the lives of children and adolescence. In Flannery, D. J., Vazsonyi, A. T., & Waldman, I. D. (Eds.), Cambridge handbook of violent behavior and aggression. Cambridge Handbooks in Psychology: 664687.CrossRefGoogle Scholar
Frankenhuis, W. E., & Nettle, D. (2020). Current debates in human life history research. Evolution and Human Behavior, 41(6), 469473. https://doi.org/10.1016/j.evolhumbehav.2020.09.005 CrossRefGoogle Scholar
Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., Henderson, J., Macleod, J., Malloy, L., Ness, A., Ring, S., Nelson, S. M., & Lawlor, D. A. (2013). Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal of Epidemiology, 42(1), 97110. https://doi.org/10.1093/ije/dys066 CrossRefGoogle ScholarPubMed
Gaydosh, L., Belsky, D. W., Domingue, B. W., Boardman, J. D., & Harris, K. M. (2018). Father absence and accelerated reproductive development in non-hispanic white women in the United States. Demography, 55(4), 12451267. https://doi.org/10.1007/s13524-018-0696-1 CrossRefGoogle ScholarPubMed
Hartman, S., Sung, S., Simpson, J. A., Schlomer, G. L., & Belsky, J. (2018). Decomposing environmental unpredictability in forecasting adolescent and young adult development: A two-sample study. Development and Psychopathology, 30(4), 13211332. https://doi.org/10.1017/S0954579417001729 CrossRefGoogle Scholar
Hartman, S., Widaman, K. F., & Belsky, J. (2015). Genetic moderation of effects of maternal sensitivity on girl’s age of menarche: Replication of the, Manuck etal., study. Development and Psychopathology, 27(3), 747756. https://doi.org/10.1017/S0954579414000856 CrossRefGoogle Scholar
Heywood, W., Patrick, K, Smith, A. M. A., & Pitts, M. K. (2015). Associations between early first sexual intercourse and later sexual and reproductive outcomes: A systematic review of population-based data. Archives of Sexual Behavior, 44, 531569. https://doi.org/10.1007/s10508-014-0374-3 CrossRefGoogle ScholarPubMed
Horvath, G., Knopik, V. S., & Marceau, K. (2019). Polygenic influences on pubertal timing and tempo and depressive symptoms in boys and girls. Journal of Research on Adolescence, 30(1), 7894. https://doi.org/10.1111/jora.12502 CrossRefGoogle ScholarPubMed
Ibitoye, M., Choi, C., Tia, H., Lee, G., & Sommer, M. (2017). Early menarche: A systematic review of its effect on sexual and reproductive health in low- and middle-income countries. PLoS One, 12(6), e0178884. https://doi.org/10.1371/journal.pone.017888 CrossRefGoogle ScholarPubMed
Jaffee, S. R., & Price, T. S. (2007). Gene-environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12(5), 432442. https://doi.org/10.1038/sj.mp.4001950 CrossRefGoogle ScholarPubMed
James, J., Ellis, B. J., Schlomer, G. L., & Garber, J. (2012). Sex-specific pathways to early puberty, sexual debut, and sexual risk taking: Tests of an integrated evolutionary-developmental model. Developmental Psychology, 48(3), 687702.CrossRefGoogle ScholarPubMed
Jones, H. J., Stergiakouli, E., Tansey, K. E., Hubbard, L., Heron, J., Cannon, M., Holmans, P., Lewis, H., Linden, E. E. J., Jones, P. B., Davey Smith, G., O’Donovan, M. C., Owen, M. J., Walters, J. T., & Zammit, S. (2016). Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry, 73(3), 221228.CrossRefGoogle ScholarPubMed
Li, Z., Liu, S., Hartman, S., & Belsky, J. (2018). Interactive effects of early-life income harshness and unpredictability on children’s socioemotional and academic functioning in kindergarten and adolescence. Developmental Psychology, 54(11), 21012112.CrossRefGoogle ScholarPubMed
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33(2), 177182. https://doi.org/10.1038/ng1071 CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Torimi, S. N., Slatkimn, M., Valle, D., Whittemore, A. S., Boehnke, M.Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747753. https://doi.org/10.1038/nature08494 CrossRefGoogle ScholarPubMed
Marmot, M. (2014). Review of social determinants and the health divie in the WHO European Region: Final report. World Health Organization, Copenhagen, Denmark.Google Scholar
Mendle, J., Harden, K. P., Turkheimer, E., Van Hulle, C. A., D’onofrio, B. M., Brooks-Gunn, J., Rodgers, J. L., Emery, R. E., & Lahey, B. B. (2009). Associations between father absence and age of first sexual intercourse. Child Development, 80(5), 14631480.CrossRefGoogle ScholarPubMed
Mendle, J., Turkheimer, E., D’Onofrio, B. M., Lynch, S. K., Emery, R. E., Slutske, W. S., & Martin, N. G. (2006). Family structure and age at menarche: A children-of-twins approach. Developmental Psychology, 42(3), 533542. https://doi.org/10.1037/0012-1649.42.3.533 CrossRefGoogle ScholarPubMed
Nettle, D., Frankenhuis, W. E., & Rickard, I. J. (2013). The evolution of predictive adaptive responses in human life history. Proceedings of the Royal Society B, 280(1766), 20131343. https://doi.org/10.1098/rspb.2013.1343 CrossRefGoogle ScholarPubMed
Northstone, K., Lewcock, M., Groom, A., Boyd, A., Macleod, J., Timpson, N. J., & Wells, N. (2019). The Avon Longitudinal Study of Parents and Children (ALSPAC): An update on the enrolled sample of index children in 2019. Wellcome Op en Research, 4(51), 110. https://doi.org/10.12688/wellcomeopenres.15132.1 Google ScholarPubMed
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., de Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G.Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539542. https://doi.org/10.1038/nature17671 CrossRefGoogle ScholarPubMed
Pembrey, M. (2004). The Avon Longitudinal Study of Parents and Children (ALSPAC): A resource for genetic epidemiology. European Journal of Endrocrinology, 151, U125U129. https://doi.org/10.1530/eje.0.151u125 CrossRefGoogle ScholarPubMed
Richardson, G. B., La Guardia, A. C., & Klay, P. M. (2018). Determining the roles of father absence and age at menarche in female psychosocial acceleration. Evolution and Human Behavior, 39(4), 437446. https://doi.org/10.1016/j.evolhumbehav.2018.03.009 CrossRefGoogle Scholar
Roff, D. A.. Life history evolution (No. 576.54 R6). 2002.Google Scholar
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 136. https://doi.org/10.18637/jss.v048.i02 CrossRefGoogle Scholar
Ryan, R. (2015). Nonresident fatherhood and adolescent sexual behavior: A comparison of siblings approach. Developmental Psychology, 51(2), 211223. https://doi.org/10.1037/a0038562 CrossRefGoogle ScholarPubMed
Schlomer, G. L., & Cho, H. (2017). Genetic and environmental contributions to age at menarche: Interactive effects of father absence and LIN28B . Evolution and Human Behavior, 38, 761769.CrossRefGoogle Scholar
Schlomer, G. L., & Marceau, K. (2021). Father absence, age at menarche, and genetic confounding: A replication and extension using a polygenic score. Development and Psychopathology.Google Scholar
Schlomer, G. L., Murray, J., Yates, B., Hair, K., & Vandenbergh, D. J. (2019). Father absence, age at menarche, and sexual behaviors in women: Evaluating the genetic confounding hypothesis using the androgen receptor gene. Evolutionary Behavioral Sciences, 13, 205222.CrossRefGoogle Scholar
Sear, R., Sheppard, P., & Coall, D. A. (2019). Cross-cultural evidence does not support universal acceleration of puberty in father-absent households. Philosophical Transactions of the Royal Society B, 374(1770), 20180124.CrossRefGoogle Scholar
Simpson, J. A., Grisskevicius, V., Kuo, S., Sung, S., & Collins, W. A. (2012). Evolution, stress, and sensitive periods: The influence of unpredictability in early versus late childhood on sex and risky behavior. Developmental Psychology, 48(3), 674686. https://doi.org/10.1037/a0027293 CrossRefGoogle ScholarPubMed
Sohn, K. (2017). The null relation between father absence and earlier menarche. Human Nature, 28(4), 407422. https://doi.org/10.1007/s12110-017-9299-6 CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The evolution of life histories, vol. 249. Oxford University Press, Oxford.Google Scholar
Stearns, S. C., & Rodrigues, A. M. M. (2020). On the use of “life history theory” in evolutionary psychology. Evolution and Human Behavior, 41(6), 474485. https://doi.org/10.1016/j.evolhumbehav.2020.02.001 CrossRefGoogle Scholar
Sung, S., Simpson, J. A., Griskevicius, V., Kuo, S., Schlomer, G. L., & Belsky, J. (2016). Secure infant-mother attachment buffers the effect of early-life stress on age at menarche. Psychological Science, 27(5), 667674.CrossRefGoogle Scholar
Tither, J. M., & Ellis, B. J. (2008). Impact of fathers on daughters’ age at menarche: A genetically and environmentally controlled sibling study. Developmental Psychology, 44(5), 14091420. https://doi.org/10.1037/a0013065 CrossRefGoogle ScholarPubMed
Towne, B., Czerwinski, S. A., Dermerath, E. W., Blangero, J., Roche, A. F., & Siervogel, R. M. (2005). Heritability of age at menarche in girls from the Fels Longitudinal Study. American Journal of Physical Anthropology, 128, 210219.CrossRefGoogle ScholarPubMed
Warren, S. M., & Barnett, M. A. (2020). Effortful control development in the face of harshness and unpredictability. Human Nature, 31, 6887. https://doi.org/10.1007/s12110-019-09360-6 CrossRefGoogle ScholarPubMed
Webster, G. D., Graber, J. A., Gesselman, A. N., Crosier, B. S., & Orozco Schember, T. (2014). Life history theory of father absence and menarche: A meta-analysis. Evolutionary Psychology, 12(2), 273294.CrossRefGoogle ScholarPubMed
Yuan, K., Bentler, P. M., & Zhang, W. (2005). The effect of skewness and kurtosis on mean and covariance structure analysis. The univariate case and its multivariate implication. Sociological Methods & Research, 34(2), 240258. https://doi.org/10.1177/0049124105280200 CrossRefGoogle Scholar
Zietsch, B. P., & Sidari, M. J. (2020). A critique of life history approaches to human trait covariation. Evolution and Human Behavior, 41(6), 527535. https://doi.org/10.1016/j.evolhumbehav.2019.05.007 CrossRefGoogle Scholar