Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:49:03.323Z Has data issue: false hasContentIssue false

Maternal smoking during pregnancy and offspring executive function: What do we know and what are the next steps?

Published online by Cambridge University Press:  16 November 2017

Lauren Micalizzi*
Affiliation:
Rhode Island Hospital Brown University
Valerie S. Knopik
Affiliation:
Rhode Island Hospital Purdue University
*
Address correspondence and reprint requests to: Lauren Micalizzi, Center for Alcohol and Addiction Studies, Box G-S121-4, Providence, RI 02912; E-mail: lauren_micalizzi@brown.edu.

Abstract

Children exposed to maternal smoking during pregnancy (MSDP) exhibit difficulties in executive function (EF) from infancy through adolescence. Due to the developmental significance of EF as a predictor of adaptive functioning throughout the life span, the MSDP–EF relation has clear public health implications. In this paper, we provide a comprehensive review of the literature on the relationship between MSDP and offspring EF across development; consider brain-based assessments, animal models, and genetically informed studies in an effort to elucidate plausible pathways of effects; discuss implications for prevention and intervention; and make calls to action for future research.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author is supported by Grant T32 DA016184 to Damaris J. Rohsenow.

References

Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8, 7182. doi:10.1076/chin.8.2.71.8724Google Scholar
Arffa, S. (2007). The relationship of intelligence to executive function and non-executive function measures in a sample of average, above average, and gifted youth. Archives of Clinical Neuropsychology, 22, 969978. doi:10.1016/j.acn.2007.08.001Google Scholar
Bennett, D. S., Mohamed, F. B., Carmody, D. P., Bendersky, M., Patel, S., Khorrami, M., … Lewis, M. (2009). Response inhibition among early adolescents prenatally exposed to tobacco: An fMRI study. Neurotoxicology and Teratology, 31, 283290. doi:10.1016/j.ntt.2009.03.003Google Scholar
Bennett, D. S., Mohamed, F. B., Carmody, D. P., Malik, M., Faro, S. H., & Lewis, M. (2013). Prenatal tobacco exposure predicts differential brain function during working memory in early adolescence: A preliminary investigation. Brain Imaging and Behavior, 7, 4959. doi:10.1007/s11682-012-9192-1Google Scholar
Berman, S., Ozkaragoz, T., Young, R. M., & Noble, E. P. (2002). D2 dopamine receptor gene polymorphism discriminates two kinds of novelty seeking. Personality and Individual Differences, 33, 867882. doi:10.1016/S0191-8869(01)00197-0Google Scholar
Best, J. R. (2012). Exergaming immediately enhances children's executive function. Developmental Psychology, 48, 15011510. doi:10.1037/a0026648Google Scholar
Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81, 16411660. doi:10.1111/j.1467-8624.2010.01499.xGoogle Scholar
Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., Gatchalian, K. M., & McClure, S. M. (2012). Are executive function and impulsivity antipodes? A conceptual reconstruction with special reference to addiction. Psychopharmacology, 221, 361387. doi:10.1007/s00213-012-2689-xGoogle Scholar
Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396398. doi:10.1038/nature05913Google Scholar
Boucher, O., Jacobson, J. L., Burden, M. J., Dewailly, É., Jacobson, S. W., & Muckle, G. (2014). Prenatal tobacco exposure and response inhibition in school-aged children: An event-related potential study. Neurotoxicology and Teratology, 44, 8188. doi:10.1016/j.ntt.2014.06.003Google Scholar
Brocki, K., Fan, J., & Fossella, J. (2008). Placing neuroanatomical models of executive function in a developmental context. Annals of the New York Academy of Sciences, 1129, 246255. doi:10.1196/annals.1417.025Google Scholar
Bryden, D. W., Burton, A. C., Barnett, B. R., Cohen, V. J., Hearn, T. N., Jones, E. A., … Roesch, M. R. (2016). Prenatal nicotine exposure impairs executive control signals in medial prefrontal cortex. Neuropsychopharmacology, 41, 716725.Google Scholar
Bublitz, M. H., & Stroud, L. R. (2012). Maternal smoking during pregnancy and offspring brain structure and function: Review and agenda for future research. Nicotine & Tobacco Research, 14, 388397. doi:10.1093/ntr/ntr191Google Scholar
Cao, J., Wang, J., Dwyer, J. B., Gautier, N. M., Wang, S., Leslie, F. M., & Li, M. D. (2013). Gestational nicotine exposure modifies myelin gene expression in the brains of adolescent rats with sex differences. Translational Psychiatry, 3, e247. doi:10.1038/tp.2013.21Google Scholar
Chang, L., Cloak, C. C., Jiang, C. S., Hoo, A., Hernandez, A. B., & Ernst, T. M. (2012). Lower glial metabolite levels in brains of young children with prenatal nicotine exposure. Journal of Neuroimmune Pharmacology, 7, 243252. doi:10.1007/s11481-011-9311-6Google Scholar
Chang, L., Oishi, K., Skranes, J., Buchthal, S., Cunningham, E., Yamakawa, R., … Ernst, T. (2016). Sex-specific alterations of white matter developmental trajectories in infants with prenatal exposure to methamphetamine and tobacco. JAMA Psychiatry. Advance online publication. doi:10.1001/jamapsychiatry.2016.2794Google Scholar
Changeux, J. P. (2010). Nicotine addiction and nicotinic receptors: Lessons from genetically modified mice. Nature Reviews Neuroscience, 11, 389401. doi:10.1038/nrn2849Google Scholar
Chatterji, P., Lahiri, K., & Kim, D. (2014). Fetal growth and neurobehavioral outcomes in childhood. Economics & Human Biology, 15, 187200. doi:10.1016/j.ehb.2014.09.002Google Scholar
Chen, R., Clifford, A., Lang, L., & Anstey, K. J. (2013). Is exposure to secondhand smoke associated with cognitive parameters of children and adolescents? A systematic literature review. Annals of Epidemiology, 23, 652661. doi:10.1016/j.annepidem.2013.07.001Google Scholar
Clark, C. A., Espy, K. A., & Wakschlag, L. (2016). Developmental pathways from prenatal stress and tobacco exposure to behavioral disinhibition. Neurotoxicology and Teratology, 53, 6474. doi:10.1016/j.ntt.2015.11.009Google Scholar
Clifford, A., Lang, L., & Chen, R. (2012). Effects of maternal cigarette smoking during pregnancy on cognitive parameters of children and young adults: A literature review. Neurotoxicology and Teratology, 34, 560570. doi:10.1016/j.ntt.2012.09.004Google Scholar
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52, 337367. doi:10.1146/annurev.psych.52.1.337Google Scholar
Congdon, E., Constable, R. T., Lesch, K. P., & Canli, T. (2009). Influence of SLC6A3 and COMT variation on neural activation during response inhibition. Biological Psychology, 81, 144152. doi:10.1016/j.biopsycho.2009.03.005Google Scholar
Congdon, E., Lesch, K. P., & Canli, T. (2008). Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: Implications for impulsivity. American Journal of Medical Genetics, 147B, 2732. doi:10.1002/ajmg.b.30557Google Scholar
Coppens, M., Vindla, S., James, D. K., & Sahota, D. S. (2001). Computerized analysis of acute and chronic changes in fetal heart rate variation and fetal activity in association with maternal smoking. American Journal of Obstetric Gynecology, 185, 421426.Google Scholar
Cornelius, M. D., Ryan, C. M., Day, N. L., Goldschmidt, L., & Willford, J. A. (2001). Prenatal tobacco effects on neuropsychological outcomes among preadolescents. Journal of Developmental and Behavioral Pediatrics, 22, 217225. doi:10.1097/00004703-200108000-00002Google Scholar
Daseking, M., Petermann, F., Tischler, T., & Waldmann, H. C. (2015). Smoking during pregnancy is a risk factor for executive function deficits in preschool-aged children. Geburtshilfe und Frauenheilkunde, 75, 6471. doi:10.1055/s-0034-1383419Google Scholar
Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural cases of inhibitory control in reaching. Annals of the New York Academy of Sciences, 608, 637676. doi:10.1111/j.1749-6632.1990.tb48913.xGoogle Scholar
Diamond, A. (2006). The early development of executive functions. In Bialystock, E. & Craik, F. I. M. (Eds.), Life span cognition: Mechanisms of change (pp. 7095). Oxford: Oxford University Press.Google Scholar
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959964. doi:10.1126/science.1204529Google Scholar
D'Onofrio, B. M., Singh, A. L., Iliadou, A., Lambe, M., Hultman, C. M., Neiderhiser, J. M., … Lichtenstein, P. (2010). A quasi-experimental study of maternal smoking during pregnancy and offspring academic achievement. Child Development, 81, 80100. doi:10.1111/j.1467-8624.2009.01382.xGoogle Scholar
D'Onofrio, B. M., van Hulle, C. A., Waldman, I. D., Rodgers, J. L., Harden, K. P., Rathouz, P. J., & Lahey, B. B. (2008). Smoking during pregnancy and offspring externalizing problems: An exploration of genetic and environmental confounds. Development and Psychopathology, 20, 139164. doi:10.1017/S0954579408000072Google Scholar
Drew, A. E., Derbez, A. E., & Werling, L. L. (2000). Nicotinic receptor-mediated regulation of dopamine transporter activity in rat prefrontal cortex. Synapse, 38, 1016. doi:10.1002/1098-2396(200010)38Google Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18. doi:10.1111/j.1467-7687.2005.00454.xGoogle Scholar
Ekblad, M., Korkeila, J., & Lehtonen, L. (2015). Smoking during pregnancy affects foetal brain development. Acta Paediatrica, 104, 1218. doi:10.1111/apa.1279Google Scholar
Ekblad, M., Korkeila, J., Parkkola, R., Lapinleimu, H., Haataja, L., Lehtonen, L., & PIPARI Study Group. (2010). Maternal smoking during pregnancy and regional brain volumes in preterm infants. Journal of Pediatrics, 156, 185190. doi:10.1016/j.jpeds.2009.07.061Google Scholar
Ellingson, J. M., Goodnight, J. A., Van Hulle, C. A., Waldman, I. D., & D'Onofrio, B. M. (2014). A sibling-comparison study of smoking during pregnancy and childhood psychological traits. Behavior Genetics, 44, 2535. doi:10.1007/s10519-013-9618-6Google Scholar
Ellingson, J. M., Rickert, M. E., Lichtenstein, P., Långström, N., & D'Onofrio, B. M. (2012). Disentangling the relationships between maternal smoking during pregnancy and co-occurring risk factors. Psychological Medicine, 42, 15471557. doi:10.1017/S0033291711002534Google Scholar
El Marroun, H., Schmidt, M. N., Franken, I. H., Jaddoe, V. W., Hofman, A., van der Lugt, A., … White, T. (2014). Prenatal tobacco exposure and brain morphology: A prospective study in young children. Neuropsychopharmacology, 39, 792800. doi:10.1038/npp.2013.273Google Scholar
England, L. J., Aagaard, K., Bloch, M., Conway, K., Cosgrove, K., Grana, R., … Lanphear, B. (2017). Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. Neuroscience & Biobehavioral Reviews, 72, 176189. doi:10.1016/j.neubiorev.2016.11.013Google Scholar
Ernst, M., Moolchan, E. T., & Robinson, M. L. (2001). Behavioral and neural consequences of prenatal exposure to nicotine. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 630641. doi:10.1097/00004583-200106000-00007Google Scholar
Espy, K. A., Fang, H., Johnson, C., Stopp, C., Wiebe, S. A., & Respass, J. (2011). Prenatal tobacco exposure: Developmental outcomes in the neonatal period. Developmental Psychology, 47, 153169. doi:10.1037/a0020724Google Scholar
Fried, P. A., & Watkinson, B. (2000). Visuoperceptual functioning differs in 9- to 12-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicology and Teratology, 22, 1120. doi:10.1016/S0892-0362(99)00046-XGoogle Scholar
Fried, P. A., & Watkinson, B. (2001). Differential effects on facets of attention in adolescents prenatally exposed to cigarettes and marihuana. Neurotoxicology and Teratology, 23, 421430. doi:10.1016/S0892-0362(01)00160-XGoogle Scholar
Fried, P. A., Watkinson, B., & Gray, R. (1992). A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marijuana, cigarettes, and alcohol. Neurotoxicology and Teratology, 14, 299311. doi:10.1016/0892-0362(92)90036-AGoogle Scholar
Fried, P. A., Watkinson, B., & Gray, R. (1998). Differential effects on cognitive functioning in 9- to 12-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicology and Teratology, 20, 293306. doi:10.1016/S0892-0362(97)00091-3Google Scholar
Fried, P. A., Watkinson, B., & Gray, R. (2003). Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicology and Teratology, 25, 427436. doi:10.1016/S0892-0362(03)00029-1Google Scholar
Friedman, N. P., Miyake, A., Altamirano, L. J., Corley, R. P., Young, S. E., Rhea, S. A., & Hewitt, J. K. (2016). Stability and change in executive function abilities from late adolescence to early adulthood: A longitudinal twin study. Developmental Psychology, 52, 326340. doi.org/10.1037/dev0000075Google Scholar
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201225. doi:10.1037/0096-3445.137.2.201Google Scholar
Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 3160. doi:10.1037/0033-2909.134.1.31Google Scholar
Gaultney, J. F., Gingras, J. L., Martin, M., & DeBrule, D. (2005). Prenatal cocaine exposure and infants' preference for novelty and distractibility. Journal of Genetic Psychology, 166, 385406. doi:10.3200/GNTP.166.4.385-406Google Scholar
Gaysina, D., Fergusson, D. M., Leve, L. D., Horwood, J., Reiss, D., Shaw, D. S., … Harold, G. T. (2013). Maternal smoking during pregnancy and offspring conduct problems: Evidence from 3 independent genetically sensitive research designs. JAMA Psychiatry, 70, 956963. doi:10.1001/jamapsychiatry.2013.127Google Scholar
Gevins, A. S., & Cutillo, B. C. (1993). Neuroelectric evidence for distributed processing in human working memory. Electroencephalography and Clinical Neurophysiology, 87, 128143.Google Scholar
Gingras, J. L., & O'Donnell, K. J. (1998). State control in the substance-exposed fetus. Annals of the New York Academy of Sciences, 846, 262276.Google Scholar
Goldman, P. S. (1974). Plasticity of function in the CNS. In Stein, D. S., Rosen, J. J., & Butters, N. (Eds.), Plasticity and recovery of function in the central nervous system (pp. 149174). London: Academic Press.Google Scholar
Herrmann, M., King, K., & Weitzman, M. (2008). Prenatal tobacco smoke and postnatal secondhand smoke exposure and child neurodevelopment. Current Opinion in Pediatrics, 20, 184190. doi:10.1097/MOP.0b013e3282f56165Google Scholar
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174180. doi:10.1016/j.tics.2012.01.006Google Scholar
Homa, D. M., Neff, L. J., King, B. A., Caraballo, R. S., Bunnell, R. E., Babb, S. D., … Centers for Disease Control and Prevention (CDC). (2015). Vital signs: Disparities in nonsmokers’ exposure to secondhand smoke—United States, 1999–2012. Morbidity and Mortality Weekly Report, 64, 103108.Google Scholar
Huijbregts, S. J., Warren, A. J., de Sonneville, L. J., & Swaab-Barneveld, H. (2008). Hot and cool forms of inhibitory control and externalizing behavior in children of mothers who smoked during pregnancy: An exploratory study. Journal of Abnormal Child Psychology, 36, 323333. doi:10.1007/s10802-007-9180-xGoogle Scholar
Huizink, A. C. (2015). Prenatal maternal substance use and offspring outcomes: Overview of recent findings and possible interventions. European Psychologist, 20, 90101. doi:10.1027/1016-9040/a000197Google Scholar
Huizink, A. C., & Mulder, E. J. (2006). Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neuroscience & Biobehavioral Reviews, 30, 2441. doi:10.1016/j.neubiorev.2005.04.005Google Scholar
Huttenlocher, P. R. (2002). Neural plasticity: The effects of environment on development of the cerebral cortex. Cambridge, MA: Harvard University Press.Google Scholar
Ivorra, C., Fraga, M. F., Bayón, G. F., Fernández, A. F., Garcia-Vicent, C., Chaves, F. J., … Lurbe, E. (2015). DNA methylation patterns in newborns exposed to tobacco in utero. Journal of Translational Medicine, 13, 25. doi:10.1186/s12967-015-0384-5Google Scholar
Jacobsen, L. K., Picciotto, M. R., Heath, C. J., Frost, S. J., Tsou, K. A., Dwan, R. A., … Mencl, W. E. (2007). Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure. Journal of Neuroscience, 27, 1349113498. doi:10.1523/jneurosci.2402-07.2007Google Scholar
Johnson, M. H. (1995). The inhibition of automatic saccades in early infancy. Developmental Psychobiology, 28, 281291. doi:10.1002/dev.420280504Google Scholar
Jones, S. M., Bailey, R., Barnes, S. P., & Partee, A. (2016). Executive Function Mapping Project: Untangling the terms and skills related to executive function and self-regulation in early childhood (OPRE Report 2016-88). Washington, DC: US Department of Health and Human Services, Administration for Children and Families, Office of Planning, Research and Evaluation.Google Scholar
Jonkman, L. M., Sniedt, F. L. F., & Kemner, C. (2007). Source localization of the Nogo-N2: A developmental study. Clinical Neurophysiology, 118, 10691077. doi:10.1016/j.clinph.2007.01.017Google Scholar
Joubert, B. R., Håberg, S. E., Nilsen, R. M., Wang, X., Vollset, S. E., Murphy, S. K., … Ueland, P. M. (2012). 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environmental Health Perspectives, 120, 14251431. doi:10.1289/ehp.1205412Google Scholar
Julvez, J., Ribas-Fitó, N., Torrent, M., Forns, M., Garcia-Esteban, R., & Sunyer, J. (2007). Maternal smoking habits and cognitive development of children at age 4 years in a population-based birth cohort. International Epidemiological Association, 36, 825832.Google Scholar
Jung, Y., Hsieh, L. S., Lee, A. M., Zhou, Z., Coman, D., Heath, C. J., … Bordey, A. (2016). An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nature Neuroscience, 19, 905914. doi:10.1038/nn.4315Google Scholar
Kafouri, S., Leonard, G., Perron, M., Richer, L., Séguin, J. R., Veillette, S., … Paus, T. (2009). Maternal cigarette smoking during pregnancy and cognitive performance in adolescence. International Journal of Epidemiology, 38, 158172. doi:10.1093/ije/dyn250Google Scholar
Kesner, R. P. (2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28, 219228. doi:10.3758/BF03331980Google Scholar
Knopik, V. S. (2009). Maternal smoking during pregnancy and child outcomes: Real or spurious effect? Developmental Neuropsychology, 34, 136. doi:10.1080/87565640802564366Google Scholar
Knopik, V. S., Maccani, M. A., Francazio, S., & McGeary, J. E. (2012). The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Development and Psychopathology, 24, 13771390. doi:10.1017/S0954579412000776Google Scholar
Knopik, V. S., Marceau, K., Bidwell, L. C., Palmer, R. H. C., Smith, T. H., Todorov, A., … Heath, A. C. (2016). ADHD risk: A genetically-informed multiple-rater approach. American Journal of Medical Genetics, 171B, 971981. doi:10.1002/ajmg.b.32421Google Scholar
Knopik, V. S., Marceau, K., Palmer, R. H., Smith, T. F., & Heath, A. C. (2016). Maternal smoking during pregnancy and offspring birth weight: A genetically-informed approach comparing multiple raters. Behavioral Genetics, 46, 353364. doi:10.1007/s10519-015-9750-6Google Scholar
Knopik, V. S., Sparrow, E. P., Madden, P. A., Bucholz, K. K., Hudziak, J. J., Reich, W., … Todd, R. D. (2005). Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: A female twin study. Psychological Medicine, 35, 625635. doi:10.1017/S0033291704004155Google Scholar
Kramer, M. S., Olivier, M., McLean, F. H., Dougherty, G. E., Willis, D. M., & Usher, R. H. (1990). Determinants of fetal growth and body proportionality. Pediatrics, 86, 1826.Google Scholar
Krämer, U. M., Rojo, N., Schüle, R., Cunillera, T., Schöls, L., Marco-Pallarés, J., … Münte, T. F. (2009). ADHD candidate gene (DRD4 exon III) affects inhibitory control in a healthy sample. BMC Neuroscience, 10, 1. doi:10.1186/1471-2202-10-150Google Scholar
Kristjansson, E. A., Fried, P. A., & Watkinson, B. (1989). Maternal smoking during pregnancy affects children's vigilance performance. Drug and Alcohol Dependence, 24, 1119. doi:10.1016/0376-8716(89)90003-3Google Scholar
Kuja-Halkola, R., D'Onofrio, B. M., Iliadou, A. N., Langstrom, N., & Lichtenstein, P. (2010). Prenatal smoking exposure and offspring stress coping in late adolescence: No causal link. International Journal of Epidemiology, 39, 15311540. doi:10.1093/ije/dyq133Google Scholar
Kuja-Halkola, R., D'Onofrio, B. M., Larsson, H., & Lichtenstein, P. (2014). Maternal smoking during pregnancy and adverse outcomes in offspring: Genetic and environmental sources of covariance. Behavior Genetics, 44, 456467. doi:10.1007/s10519-014-9668-4Google Scholar
Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences, 99, 1333613341. doi:10.1073/pnas.162486399Google Scholar
Ladd-Acosta, C., Shu, C., Lee, B. K., Gidaya, N., Singer, A., Schieve, L. A., … Newschaffer, C. J. (2016). Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood. Environmental Research, 144, 139148. doi:10.1016/j.envres.2015.11.014Google Scholar
Lambe, M., Hultman, C., Torrång, A., MacCabe, J., & Cnattingius, S. (2006). Maternal smoking during pregnancy and school performance at age 15. Epidemiology, 17, 524530. doi:10.1097/01.ede.0000231561.49208Google Scholar
Langley, K., Rice, F., Van den Bree, M. B., & Thapar, A. (2005). Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour: A review. Minerva Pediatrica, 57, 359371.Google Scholar
Lansink, J. M., Mintz, S., & Richards, J. E. E. (2000). The distribution of infant attention during object examination. Developmental Science, 3, 163170. doi:10.1111/1467-7687.00109Google Scholar
Lassen, K., & Oei, T. S. (1998). Effects of maternal cigarette smoking during pregnancy on long-term physical and cognitive parameters of child development. Addictive Behaviors, 23, 635654. doi:10.1016/S0306-4603(98)00022-7Google Scholar
Law, K. L., Stroud, L. R., LaGasse, L. L., Niaura, R., Liu, J., & Lester, B. M. (2003). Smoking during pregnancy and newborn neurobehavior. Pediatrics, 111, 13181323. doi:10.1542/peds.111.6.1318Google Scholar
Leader, L. R., & Bennett, M. J. (1995). Fetal habituation and its clinical applications. In Levev, M. I., Lilford, R. J., Bennett, M. J., & Punt, J. (Eds.), Fetal and neonatal neurology and neurosurgery (pp. 4560). London: Churchill Livingstone.Google Scholar
Leech, S. L., Richardson, G. A., Goldschmidt, L., & Day, N. L. (1999). Prenatal substance exposure: Effects on attention and impulsivity of 6-year-olds. Neurotoxicology and Teratology, 21, 109118. doi:10.1016/S0892-0362(98)00042-7Google Scholar
Liu, J., Lester, B. M., Neyzi, N., Sheinkopf, S. J., Gracia, L., Kekatpure, M., & Kosofsky, B. E. (2013). Regional brain morphometry and impulsivity in adolescents following prenatal exposure to cocaine and tobacco. JAMA Pediatrics, 167, 348354. doi:10.1001/jamapediatrics.2013.550Google Scholar
Maccani, J. Z., & Maccani, M. A. (2015). Altered placental DNA methylation patterns associated with maternal smoking: Current perspectives. Advances in Genomics and Genetics, 2015, 205214. doi:10.2147/AGG.S61518Google Scholar
Makris, N., Seidman, L. J., Valera, E. M., Biederman, J., Monuteaux, M. C., Kennedy, D. N., … Faraone, S. V. (2010). Anterior cingulate volumetric alterations in treatment-naïve adults with ADHD: A pilot study. Journal of Attention Disorders, 13, 407413. doi:10.1177/1087054709351671Google Scholar
Marceau, K., Bidwell, L. C., Karoly, H. C., Evans, A., Todorov, A., Palmer, R. H. C., … Knopik, V. S. (2017). Within family effects of smoking during pregnancy on ADHD symptoms: The importance of phenotype. Manuscript submitted for publication.Google Scholar
Matthys, W., Vanderschuren, L. J., & Schutter, D. J. (2013). The neurobiology of oppositional defiant disorder and conduct disorder: Altered functioning in three mental domains. Development and Psychopathology, 25, 193207. doi:10.1017/S0954579412000272Google Scholar
Maurer, D., Mondloch, C. J., & Lewis, T. L. (2007). Sleeper effects. Developmental Science, 10, 4047. doi:10.1111/j.1467-7687.2007.00562.xGoogle Scholar
McClelland, M. M., & Cameron, C. E. (2011). Self-regulation and academic achievement in elementary school children. New Directions for Child and Adolescent Development, 2011, 2944. doi:10.1002/cd.302Google Scholar
McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. J. (2007). Links between behavioral regulation and preschoolers' literacy, vocabulary, and math skills. Developmental Psychology, 43, 947959. doi:10.1037/0012-1649.43.4.947Google Scholar
Mezzacappa, E., Buckner, J. C., & Earls, F. (2011). Prenatal cigarette exposure and infant learning stimulation as predictors of cognitive control in childhood. Developmental Science, 14, 881891. doi:10.1111/j.1467-7687.2011.01038.xGoogle Scholar
Micalizzi, L., Marceau, K., Brick, L., Palmer, R. H., Todorov, A. A., Heath, A. C., … Knopik, V. S. (in press). Inhibitory control in siblings discordant for exposure to maternal smoking during pregnancy. Developmental Psychology.Google Scholar
Micalizzi, L., Wang, M., & Saudino, K. J. (2015). Difficult temperament and negative parenting in early childhood: A genetically informed cross-lagged analysis. Developmental Science. Advance online publication. doi:10.1111/desc.12355Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814. doi:10.1177/0963721411429458Google Scholar
Miyake, A., Friedman, N., Emerson, M., Witzki, A., Howerter, A., & Wagner, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi:10.1006/cogp.1999.0734Google Scholar
Munakata, Y. (2001). Graded representations in behavioral dissociations. Trends in Cognitive Sciences, 5, 309315. doi:10.1016/S1364-6613(00)01682-XGoogle Scholar
Muneoka, K., Ogawa, T., Kamei, K., Muraoka, S. I., Tomiyoshi, R., Mimura, Y., … Takigawa, M. (1997). Prenatal nicotine exposure affects the development of the central serotonergic system as well as the dopaminergic system in rat offspring: Involvement of route of drug administrations. Developmental Brain Research, 102, 117126. doi:10.1016/S0165-3806(97)00092-8Google Scholar
Mychasiuk, R., Muhammad, A., Gibb, R., & Kolb, B. (2013). Long-term alterations to dendritic morphology and spine density associated with prenatal exposure to nicotine. Brain Research, 1499, 5360. doi:10.1016/j.brainres.2012.12.021Google Scholar
Naeye, R. L., & Peters, E. C. (1984). Mental development of children whose mothers smoked during pregnancy. Journal of the American College of Obstetricians and Gynecologists, 64, 601607.Google Scholar
Neuman, R. J., Lobos, E., Reich, W., Henderson, C. A., Sun, L. W., & Todd, R. D. (2007). Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biological Psychiatry, 61, 13201328. doi:10.1016/j.biopsych.2006.08.049Google Scholar
Newman, J. (1995). Thalamic contributions to attention and consciousness. Consciousness and Cognition, 4, 172193. doi:10.1006/ccog.1995.1024Google Scholar
Nigg, J. T., & Breslau, N. (2007). Prenatal smoking exposure, low birth weight, and disruptive behavior disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 362369. doi:10.1097/01.chi.0000246054.76167.44Google Scholar
Noland, J. S., Singer, L. T., Short, E. J., Minnes, S., Arendt, R. E., Kirchner, H. L., & Bearer, C. (2005). Prenatal drug exposure and selective attention in preschoolers. Neurotoxicology and Teratology, 27, 429438. doi:10.1016/j.ntt.2005.02.001Google Scholar
Olds, D. (1997). Tobacco exposure and impaired development: A review of the evidence. Developmental Disabilities Research Reviews, 3, 257269. doi:10.1002/(sici)1098-2779(1997)3:3<257::aid-mrdd6>3.0.co;2-m3.0.co;2-m>Google Scholar
Oncken, C., Kranzler, H., O'Malley, P., Gendreau, P., & Campbell, W. A. (2002). The effects of cigarette smoking on fetal heart rate characteristics. Obstetrics and Gynecology, 99, 751755.Google Scholar
Peterson, B. S., Anderson, A. W., Ehrenkranz, R., Staib, L. H., Tageldin, M., Colson, E., … Ment, L. R. (2003). Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics, 111, 939948.Google Scholar
Piper, B. J., & Corbett, S. M. (2012). Executive function profile in the offspring of women that smoked during pregnancy. Nicotine & Tobacco Research, 14, 191199. doi:10.1093/ntr/ntr181Google Scholar
Polańska, K., Jurewicz, J., & Hanke, W. (2015). Smoking and alcohol drinking during pregnancy as the risk factors for poor child neurodevelopment—A review of epidemiological studies. International Journal of Occupational Medicine and Environmental Health, 28, 419443. doi:10.13075/ijomeh.1896.00424Google Scholar
Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 123. doi:10.1146/annurev.psych.58.110405.085518Google Scholar
Posner, M. I., & Rothbart, M. K. (2013). Development of attention networks. In Kar, B. R. (Ed.), Cognition and brain development: Converging evidence from various methodologies (pp. 6183). Washington, DC: American Psychological Association.Google Scholar
Powell, K. B., & Voeller, K. K. (2004). Prefrontal executive function syndromes in children. Journal of Child Neurology, 19, 785797. doi:10.1177/08830738040190100801Google Scholar
Preuss, T. M. (1995). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience, 7, 124. doi:10.1162/jocn.1995.7.1.1Google Scholar
Ramsay, M. C., & Reynolds, C. R. (2000). Does smoking by pregnant women influence IQ, birth weight, and developmental disabilities in their infants? A methodological review and multivariate analysis. Neuropsychology Review, 10, 140. doi:10.1023/A:1009065713389Google Scholar
Richards, J. E. (1985). The development of sustained visual attention in infants from 14 to 26 weeks of age. Psychophysiology, 26, 422430. doi:10.1111/j.1469-8986.1985.tb01625.xGoogle Scholar
Richardson, G. A., Day, N. L., & Taylor, P. M. (1989). The effect of prenatal alcohol, marijuana, and tobacco exposure on neonatal behavior. Infant Behavior and Development, 12, 199209. doi:10.1016/0163-6383(89)90006-4Google Scholar
Ross, E. J., Graham, D. L., Money, K. M., & Stanwood, G. D. (2015). Developmental consequences of fetal exposure to drugs: What we know and what we still must learn. Neuropsychopharmacology, 40, 6187. doi:10.1038/npp.2014.147Google Scholar
Rothbart, M. K., & Posner, M. (2001). Mechanism and variation in the development of attentional networks. In Nelson, C. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (pp. 353363). Cambridge, MA: MIT Press.Google Scholar
Roy, T. S., Andrews, J. E., Seidler, F. J., & Slotkin, T. A. (1998). Nicotine evokes cell death in embryonic rat brain during neurulation. Journal of Pharmacology and Experimental Therapeutics, 287, 11361144.Google Scholar
Roza, S. J., Verburg, B. O., Jaddoe, V. W., Hofman, A., Mackenbach, J. P., Steegers, E. A., … Tiemeier, H. (2007). Effects of maternal smoking in pregnancy on prenatal brain development: The Generation R Study. European Journal of Neuroscience, 25, 611617. doi:10.1111/j.1460-9568.2007.05393.xGoogle Scholar
Ruff, H. A., & Rothbart, M. K. (1996). Attention in early development: Themes and variations. New York: Oxford University Press.Google Scholar
Schneider, T., Ilott, N., Brolese, G., Bizarro, L., Asherson, P. E., & Stolerman, I. P. (2011). Prenatal exposure to nicotine impairs performance of the 5-choice serial reaction time task in adult rats. Neuropsychopharmacology, 36, 11141125. doi:10.1038/npp.2010.249Google Scholar
Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society B, 351, 14051411.Google Scholar
Shaw, P., Stringaris, A., Nigg, J., & Leibenluft, E. (2015). Emotion dysregulation in attention deficit hyperactivity disorder. Focus, 14, 127144. doi:10.1176/appi.focus.140102Google Scholar
Slotkin, T. A. (2004). Cholinergic systems in brain development and disruption by neurotoxicants: Nicotine, environmental tobacco smoke, organophosphates. Toxicology and Applied Pharmacology, 198, 132151. doi:10.1016/j.taap.2003.06.001Google Scholar
Slotkin, T. A., McCook, E. C., & Seidler, F. J. (1997). Cryptic brain cell injury caused by fetal nicotine exposure is associated with persistent elevations of c-fos protooncogene expression. Brain Research, 750, 180188. doi:10.1016/S0006-8993(96)01345-5Google Scholar
Smith, J. L., Jamadar, S., Provost, A. L., & Michie, P. T. (2013). Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. International Journal of Psychophysiology, 87, 244253. doi:10.1016/j.ijpsycho.2012.07.185Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328. doi:10.3389/fpsyg.2015.00328Google Scholar
Streissguth, A. P., Martin, D. C., Barr, H. M., Sandman, B. M., Kirchner, G. L., & Darby, B. L. (1984). Intrauterine alcohol and nicotine exposure: Attention and reaction time in 4-year-old children. Developmental Psychology, 20, 533541. doi:10.1037/0012-1649.20.4.533Google Scholar
Stuss, D. T., & Alexander, M. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63, 289298. doi:10.1007/s004269900007Google Scholar
Tong, V. T., Dietz, P. M., Morrow, B., D'Angelo, D. V., Farr, S. L., Rokhill, K. M., & England, L. J. (2013). Trends in smoking before, during, and after pregnancy—Pregnancy Risk Assessment Monitoring System, United States, 40 sites, 2000–2010. Surveillance Summaries, 62(SS06), 119.Google Scholar
Toplak, M. E., West, R. F., & Stanovich, K. E. (2013). Practitioner review: Do performance-based measures and ratings of executive function assess the same construct? Journal of Child Psychology and Psychiatry, 54, 131143. doi:10.1111/jcpp.12001Google Scholar
Wakschlag, L. S., Lahey, B. B., Loeber, R., Green, S. M., Gordon, R. A., & Leventhal, B. L. (1997). Maternal smoking during pregnancy and the risk of conduct disorder in boys. Archives of General Psychiatry, 54, 670676.Google Scholar
Weitzman, M., Byrd, R. S., Aligne, C. A., & Moss, M. (2002). The effects of tobacco exposure on children's behavioral and cognitive functioning: Implications for clinical and public health policy and future research. Neurotoxicology and Teratology, 24, 397406. doi:10.1016/S0892-0362(02)00201-5Google Scholar
Wessler, I., Kirkpatrick, C. J., & Racké, K. (1998). Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: Expression and function in humans. Pharmacology & Therapeutics, 77, 5979. doi:10.1016/S0163-7258(97)00085-5Google Scholar
Wiebe, S. A., Clark, C. A., De Jong, D. M., Chevalier, N., Espy, K. A., & Wakschlag, L. (2015). Prenatal tobacco exposure and self-regulation in early childhood: Implications for developmental psychopathology. Development and Psychopathology, 27, 397409. doi:10.1017/S095457941500005XGoogle Scholar
Wiebe, S. A., Espy, K. A., Stopp, C., Respass, J., Stewart, P., Jameson, T. R., … Huggenvik, J. I. (2009). Gene-environment interactions across development: Exploring DRD2 genotype and prenatal smoking effects on self-regulation. Developmental Psychology, 45, 3144. doi:10.1037/a0014550Google Scholar
Wiebe, S. A., Fang, H., Johnson, C., James, K. E., & Espy, K. A. (2014). Determining the impact of prenatal tobacco exposure on self-regulation at 6 months. Developmental Psychology, 50, 1746. doi:10.1037/a0035904Google Scholar
Willoughby, M., Greenberg, M., Blair, C., & Stifter, C. (2007). Neurobehavioral consequences of prenatal exposure to smoking at 6 to 8 months of age. Infancy, 12, 273301. doi:10.1111/j.1532-7078.2007.tb00244.xGoogle Scholar
Yang, B. R., Chan, R. C. K., Gracia, N., Cao, X. Y., Zou, X. B., Jing, J., … Shum, D. (2011). Cool and hot executive functions in medication-naive attention deficit hyperactivity disorder children. Psychological Medicine, 41, 25932602. doi:10.1017/S0033291711000869Google Scholar
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., & Weintraub, S. (2013). II. NIH Toolbox Cognition Battery (CB): Measuring executive function and attention. Monographs of the Society for Research in Child Development, 78, 1633.Google Scholar
Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In Goswami, U. (Ed.), Blackwell handbook of child cognitive development (pp. 445469). Malden, MA: Blackwell.Google Scholar
Zelazo, P. D., Müller, U., Frye, D., & Marcovitch, S. (2003). The development of executive function in early childhood: VI. Cognitive complexity and control—Revised. Monographs of the Society for Research in Child Development, 68, 93119.Google Scholar
Zeskind, P. S., & Gingras, J. L. (2006). Maternal cigarette-smoking during pregnancy disrupts rhythms in fetal heart rate. Journal of Pediatric Psychology, 31, 514. doi:10.1093/jpepsy/jsj031Google Scholar
Zhu, J., Zhang, X., Xu, Y., Spencer, T. J., Biederman, J., & Bhide, P. G. (2012). Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover, and responsiveness to oral methylphenidate treatment. Journal of Neuroscience, 32, 94109418. doi:10.1523/jneurosci.1041-12.201Google Scholar