Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T04:52:47.705Z Has data issue: false hasContentIssue false

Morphogenesis and mental process

Published online by Cambridge University Press:  31 October 2008

Jason W. Brown*
Affiliation:
New York University Medical Center, Department of Neurology
*
Address correspondence and reprint requests to: Jason W. Brown, 66 East 79th Street, New York, NY 10021.

Abstract

Parcellation and heterochrony (neoteny) reflect the pattern and rate of a growth mechanism in morphogenesis. Structure (morphology) and function (behavior) are staged realizations of morphogenetic process. This process continues into adult cognition in the actualization of the mind/brain state. Parcellation obtains in the pruning of cells and connections in early growth, whereas inhibition obtains in a relatively stable morphology with constraints on context: item transforms in microgeny. Selective retardation in process (neoteny) leads to growth at earlier (juvenile) phases. This accounts for the specification of the language areas and elaboration at preliminary phases in mind — for example, dominance, introspection, and creativity.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, L. (1905). De la persistence des sensations lumineuses dans le champ aveugle des hémianopsiques. Semaine Médicale, 25, 253255.Google Scholar
Bender, M., & Krieger, H. (1951). Visual function in perimetrically blind fields. Archives of Neurology and Psychiatry, 65, 7299.CrossRefGoogle Scholar
Best, C. (1991). The emergence of native-language phonological influences in infants: A perceptual assimilation model. Haskins Laboratory Status Report on Speech Perception, SR 107/108, 130.Google Scholar
Bishop, E. (1992). The underlying nature of specific language impairment. Journal of Child Psychology and Psychiatry, 33, 366.CrossRefGoogle ScholarPubMed
Bonner, J., & Horn, H. (1982). Selection for size, shape and developmental timing. In Bonner, J. (Ed.), Evolution and development (pp. 259276). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Brown, J. W. (1977). Mind, brain and consciousness. New York: Academic Press.Google Scholar
Brown, J. W. (1988). Life of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
Brown, J. W. (1990). Overview. In Scheibel, A. & Wechsler, A. (Eds.), Neurobiology of higher functions (pp. 357365). New York: Guilford Press.Google Scholar
Brown, J. W. (1991). Self and process. New York: Springer-Verlag.CrossRefGoogle Scholar
Brown, J. W., & Jaffe, J. (1975). Hypothesis on cerebral dominance. Neuropsychologia, 26, 183189.Google Scholar
Carey, S., & Gelman, R. (Eds.). (1991). The epigenesis of mind: Essays on biology and cognition. Hillsdale, NJ: Erlbaum.Google Scholar
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Coghill, G. (1964). Anatomy and the problem of behavior. New York: Hafner.Google Scholar
Creutzfeldt, O. (1977). Generality of the functional structure of the neocortex. Naturwissenschaften, 64, 507517.CrossRefGoogle ScholarPubMed
Ebbeson, S. (1984). Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences, 7, 321366.CrossRefGoogle Scholar
Edelman, G. (1987). Neural Darwinism. New York: Basic Books.Google Scholar
Gleason, J. (1978). The acquisition and dissolution of the English inflectional system. In Carramazza, A. & Zurif, E. (Eds.), Language acquisition and language breakdown (pp. 109120). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypotheses. Behavioral Brain Sciences, 8, 567616.CrossRefGoogle Scholar
Goodwin, B. (1982). Development and evolution. Journal of Theoretical Biology, 97, 4355.CrossRefGoogle ScholarPubMed
Goodwin, B. (1984). Changing from an evolutionary to a generative paradigm in biology. In Pollard, J. (Ed.), Evolutionary theory: Paths into the future (pp. 99120). New York: Wiley.Google Scholar
Gould, S. (1977). Ontogeny and phytogeny. Cambridge: Harvard University Press.Google Scholar
Gould, S. (1982). Change in developmental timing as a mechanism of macroevolution. In Bonner, J. (Ed.), Evolution and development (pp. 333346). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hoffman, R. (1987). Computer simulations of neural information processing and the schizophrenia-mania dichotomy. Archives of General Psychiatry, 44, 178188.CrossRefGoogle ScholarPubMed
Innocenti, G. (1984). Commentary. Behavioral Brain Sciences, 7, 340341.CrossRefGoogle Scholar
Karmiloff-Smith, A. (1991). Beyond modularity: Innate constraints and developmental change. In Carey, S. & Gelman, R. (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 171198). Hillsdale, NJ: Erlbaum.Google Scholar
Katz, M. (1983). Ontophyletics: Studying evolution beyond the genome. Perspectives in Biology and Medicine, 26, 323333.CrossRefGoogle Scholar
Keil, F. (1991). The emergence of theoretical beliefs as constraints on concepts. In Carey, S. & Gelman, R. (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 237256). Hillsdale, NJ: Erlbaum.Google Scholar
MacLean, P. (1991). Neofrontocerebellar evolution in regard to computation and prediction: Some fractal aspects of microgenesis. In Hanlon, R. (Ed.), Cognitive microgenesis: A neuropsychological perspective (pp. 331). New York: Springer-Verlag.CrossRefGoogle Scholar
MacNeilage, P., Studdert-Kennedy, M., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral Brain Sciences, 10, 247303.CrossRefGoogle Scholar
Malsburg, C. von der, & Singer, W. (1988). Principles of cortical network organization. In Rakic, P. & Singer, W. (Eds.), Neurobiology of neocortex. New York: Wiley.Google Scholar
Pribram, K. (1991). Brain and perception. Hillsdale, NJ: Erlbaum.Google Scholar
Rakic, P. (1989). Competitive interactions during neuronal and synaptic development. In Galaburda, A. (Ed.), From reading to neurons (pp. 443462). Cambridge: MIT Press.Google Scholar
Rakic, P. (1992). Developmental origin of cortical diversity. Schmitt lecture, Rockefeller University, New York.Google Scholar
Reber, A. (1992). The cognitive unconscious: An evolutionary perspective. Consciousness and Cognition, 1.CrossRefGoogle Scholar
Robertson, D. (1991). Feedback theory and Darwinian evolution. Journal of Theoretical Biology, 152, 469484.CrossRefGoogle ScholarPubMed
Sahlen, B. (1991). From depth to surface: A case study approach to severe developmental language disorders. Studies in Logopedics and Phoniatrics No. 1, Lund University, Lund, Sweden.Google Scholar
Sanides, F. (1975). Comparative neurology of the temporal lobe in primates including man with reference to speech. Brain and Language, 2, 396419.CrossRefGoogle ScholarPubMed
Semmes, J. (1968). Hemispheric specialization: A possible clue to mechanism. Neuropsychologia, 6, 1126.CrossRefGoogle Scholar
Stent, G. (1981). Strength and weakness of the genetic approach to the development of the nervous system. Annual Review of Neuroscience, 4, p163194.CrossRefGoogle Scholar
Striedter, G., & Northcutt, R. (1991). Biological hierarchies and the concept of homology. Brain, Behavior and Evolution, 38, 177189.CrossRefGoogle ScholarPubMed
Thatcher, R. (1992a). Are rhythms of human cerebral development ”traveling waves”? Behavioral Brain Sciences, 14, 575.CrossRefGoogle Scholar
Thatcher, R. (1992b). Cyclic cortical reorganization: Origins of human cognitive development. In Dawson, G. & Fischer, K. (Eds.), Human behavior and brain development.Google Scholar
Trevarthen, C. (1984). Emotions in infancy. In Scherer, K. & Ekman, P. (Eds.), Approaches to emotion. Hillsdale, NJ: Erlbaum.Google Scholar
Tucker, D. M. (1992). Developing emotions and cortical networks. In Gunnar, M. & Nelson, C. (Eds.), Minnesota Symposium on Child Psychology: Vol.24. Developmental Behavioral Neuroscience (pp. 75128). Hillsdale, NJ: Erlbaum.Google Scholar
Vandervert, L. (1988, 1990). Systems thinking and a proposal for a neurological positivism. Systems Research, 5, 313321, 7, 117.CrossRefGoogle Scholar
Van Sluyters, R., Atkinson, J., Banks, M., Held, R., Hoffmann, K., & Shatz, C. (1987). The development of vision and visual perception. In Spillman, L. & Werner, J. (Eds.), Visual perception: The neurophysiological foundations. New York: Academic Press.Google Scholar
Wall, P. (1988). Recruitment of ineffective synapses after injury. In Waxman, S. (Ed.), Functional recovery in neurological disease (pp. 387400). New York: Raven Press.Google Scholar
Werner, H. (1948). Comparative psychology of mental development. New York: International Universities Press.Google Scholar
Witelson, S. (1990). Structural correlates of cognition in the human brain. In Scheibel, A. & Wechsler, A. (Eds.), Neurobiology of higher functions (pp. 167184). New York: Guilford Press.Google Scholar