Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T12:09:45.926Z Has data issue: false hasContentIssue false

The neural bases of obsessive–compulsive disorder in children and adults

Published online by Cambridge University Press:  07 October 2008

Tiago V. Maia
Affiliation:
Columbia University and New York State Psychiatric Institute
Rebecca E. Cooney
Affiliation:
Columbia University and New York State Psychiatric Institute
Bradley S. Peterson*
Affiliation:
Columbia University and New York State Psychiatric Institute
*
Address correspondence and reprint requests to: Bradley S. Peterson, Columbia University and New York State Psychiatric Institute, 1051 Riverside Drive, Unit 78, New York, NY 10032; E-mail: petersob@childpsych.columbia.edu.

Abstract

Functional imaging studies have reported with remarkable consistency hyperactivity in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and caudate nucleus of patients with obsessive–compulsive disorder (OCD). These findings have often been interpreted as evidence that abnormalities in cortico–basal ganglia–thalamo–cortical loops involving the OFC and ACC are causally related to OCD. This interpretation remains controversial, however, because such hyperactivity may represent either a cause or a consequence of the symptoms. This article analyzes the evidence for a causal role of these loops in producing OCD in children and adults. The article first reviews the strong evidence for anatomical abnormalities in these loops in patients with OCD. These findings are not sufficient to establish causality, however, because anatomical alterations may themselves be a consequence rather than a cause of the symptoms. The article then reviews three lines of evidence that, despite their own limitations, permit stronger causal inferences: the development of OCD following brain injury, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection, and neurosurgical lesions that attenuate OCD. Converging evidence from these various lines of research supports a causal role for the cortico–basal ganglia–thalamo–cortical loops that involve the OFC and ACC in the pathogenesis of OCD in children and adults.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was partially supported by NIMH Grants K02 74677, 2T32 MH16434, and MH068318.

References

Ackerman, D. L., Greenland, S., Bystritsky, A., Morgenstern, H., & Katz, R. J. (1994). Predictors of treatment response in obsessive–compulsive disorder: Multivariate analyses from a multicenter trial of clomipramine. Journal of Clinical Psychopharmacology, 14, 247254.CrossRefGoogle ScholarPubMed
Adler, C. M., McDonough-Ryan, P., Sax, K. W., Holland, S. K., Arndt, S., & Strakowski, S. M. (2000). fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. Journal of Psychiatric Research, 34, 317324.CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366375.Google Scholar
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Allen, A. J., Leonard, H. L., & Swedo, S. E. (1995). Case study: A new infection-triggered, autoimmune subtype of pediatric OCD and Tourette's syndrome. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 307311.Google Scholar
Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In Aggleton, J. P. (Ed.), The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 166). New York: Wiley–Liss.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Anderson, K. E., Louis, E. D., Stern, Y., & Marder, K. S. (2001). Cognitive correlates of obsessive and compulsive symptoms in Huntington's disease. American Journal of Psychiatry, 158, 799801.CrossRefGoogle ScholarPubMed
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115116.CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170177.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11, 805821.CrossRefGoogle ScholarPubMed
Atmaca, M., Yildirim, B. H., Ozdemir, B. H., Aydin, B. A., Tezcan, A. E., & Ozler, A. S. (2006). Volumetric MRI assessment of brain regions in patients with refractory obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 10511057.CrossRefGoogle ScholarPubMed
Atmaca, M., Yildirim, H., Ozdemir, H., Tezcan, E., & Poyraz, A. K. (2007). Volumetric MRI study of key brain regions implicated in obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 4652.CrossRefGoogle ScholarPubMed
Aylward, E. H., Harris, G. J., Hoehn-Saric, R., Barta, P. E., Machlin, S. R., & Pearlson, G. D. (1996). Normal caudate nucleus in obsessive–compulsive disorder assessed by quantitative neuroimaging. Archives of General Psychiatry, 53, 577584.Google Scholar
Barker, P. B. (2001). N-Acetyl aspartate—A neuronal marker? Annals of Neurology, 49, 423424.CrossRefGoogle ScholarPubMed
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 6594.CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., et al. (2005). White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15, 18481854.CrossRefGoogle ScholarPubMed
Bartha, R., Stein, M. B., Williamson, P. C., Drost, D. J., Neufeld, R. W., Carr, T. J., et al. (1998). A short echo 1H spectroscopy and volumetric MRI study of the corpus striatum in patients with obsessive–compulsive disorder and comparison subjects. American Journal of Psychiatry, 155, 15841591.CrossRefGoogle Scholar
Baxter, L. R. Jr., Clark, E. C., Iqbal, M., & Ackermann, R. F. (2001). Cortical–subcortical systems in the mediation of obsessive–compulsive disorder: Modeling the brain's mediation of a classic “neurosis.” In Lichter, D. G. & Cummings, J. L. (Eds.), Frontal–subcortical circuits in psychiatric and neurological disorders (pp. 207230). New York: Guilford Press.Google Scholar
Beglinger, L. J., Langbehn, D. R., Duff, K., Stierman, L., Black, D. W., Nehl, C., et al. (2007). Probability of obsessive and compulsive symptoms in Huntington's disease. Biological Psychiatry, 61, 415418.CrossRefGoogle ScholarPubMed
Bellodi, L., Sciuto, G., Diaferia, G., Ronchi, P., & Smeraldi, E. (1992). Psychiatric disorders in the families of patients with obsessive–compulsive disorder. Psychiatry Research, 42, 111120.CrossRefGoogle ScholarPubMed
Benes, F. M. (1989). Myelination of cortical–hippocampal relays during late adolescence. Schizophrenia Bulletin, 15, 585593.CrossRefGoogle ScholarPubMed
Berthier, M. L., Kulisevsky, J. J., Gironell, A., & Lopez, O. L. (2001). Obsessive–compulsive disorder and traumatic brain injury: Behavioral, cognitive, and neuroimaging findings. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14, 2331.Google ScholarPubMed
Bingley, T., Leksell, L., Meyerson, B. A., & Rylander, G. (1977). Long-term results of stereotactic capsulotomy in chronic obsessive–compulsive neurosis. In Sweet, W. H., Obrador, S., & Martín-Rodríguez, J. G. (Eds.), Neurosurgical treatment in psychiatry, pain and epilepsy (pp. 287299). Baltimore, MD: University Park Press.Google Scholar
Bland, R. C., Newman, S. C., & Orn, H. (1988). Age of onset of psychiatric disorders. Acta Psychiatrica Scandinavica, 338(Suppl.), 4349.CrossRefGoogle ScholarPubMed
Bookstein, F. L. (2001). “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage, 14, 14541462.Google Scholar
Bremner, J. D. (2004). Brain imaging in anxiety disorders. Expert Review of Neurotherapeutics, 4, 275284.CrossRefGoogle ScholarPubMed
Busatto, G. F., Buchpiguel, C. A., Zamignani, D. R., Garrido, G. E., Glabus, M. F., Rosario-Campos, M. C., et al. (2001). Regional cerebral blood flow abnormalities in early-onset obsessive–compulsive disorder: An exploratory SPECT study. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 347354.CrossRefGoogle ScholarPubMed
Cardoner, N., Soriano-Mas, C., Pujol, J., Alonso, P., Harrison, B. J., Deus, J., et al. (2007). Brain structural correlates of depressive comorbidity in obsessive–compulsive disorder. NeuroImage, 38, 413421.CrossRefGoogle ScholarPubMed
Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 363, 615641.CrossRefGoogle ScholarPubMed
Carmin, C. N., Wiegartz, P. S., Yunus, U., & Gillock, K. L. (2002). Treatment of late-onset OCD following basal ganglia infarct. Depression and Anxiety, 15, 8790.Google Scholar
Carmona, S., Bassas, N., Rovira, M., Gispert, J. D., Soliva, J. C., Prado, M., et al. (2007). Pediatric OCD structural brain deficits in conflict monitoring circuits: A voxel-based morphometry study. Neuroscience Letters, 421, 218223.CrossRefGoogle ScholarPubMed
Casey, B. J., Trainor, R., Giedd, J., Vauss, Y., Vaituzis, C. K., Hamburger, S., et al. (1997). The role of the anterior cingulate in automatic and controlled processes: A developmental neuroanatomical study. Developmental Psychobiology, 30, 6169.Google Scholar
Castillo, A. R., Buchpiguel, C. A., de Araujo, L. A., Castillo, J. C., Asbahr, F. R., Maia, A. K., et al. (2005). Brain SPECT imaging in children and adolescents with obsessive–compulsive disorder. Journal of Neural Transmission, 112, 11151129.CrossRefGoogle ScholarPubMed
Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suarez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex: A review. Cerebral Cortex, 10, 220242.CrossRefGoogle ScholarPubMed
Caviness, V. S. Jr., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. (1996). The human brain age 7-11 years: A volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6, 726736.Google Scholar
Cendes, F., Andermann, F., Preul, M. C., & Arnold, D. L. (1994). Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images. Annals of Neurology, 35, 211216.Google Scholar
Chabane, N., Delorme, R., Millet, B., Mouren, M. C., Leboyer, M., & Pauls, D. (2005). Early-onset obsessive–compulsive disorder: A subgroup with a specific clinical and familial pattern? Journal of Child Psychology and Psychiatry and Allied Disciplines, 46, 881887.CrossRefGoogle ScholarPubMed
Chacko, R. C., Corbin, M. A., & Harper, R. G. (2000). Acquired obsessive–compulsive disorder associated with basal ganglia lesions. Journal of Neuropsychiatry and Clinical Neurosciences, 12, 269272.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W., & Sahakian, B. J. (2005). The neuropsychology of obsessive compulsive disorder: The importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neuroscience and Biobehavioral Reviews, 29, 399419.Google Scholar
Choi, J. S., Kang, D. H., Kim, J. J., Ha, T. H., Lee, J. M., Youn, T., et al. (2004). Left anterior subregion of orbitofrontal cortex volume reduction and impaired organizational strategies in obsessive–compulsive disorder. Journal of Psychiatric Research, 38, 193199.CrossRefGoogle ScholarPubMed
Choi, J. S., Kim, H. S., Yoo, S. Y., Ha, T. H., Chang, J. H., Kim, Y. Y., et al. (2006). Morphometric alterations of anterior superior temporal cortex in obsessive–compulsive disorder. Depression and Anxiety, 23, 290296.Google Scholar
Choi, J. S., Kim, S. H., Yoo, S. Y., Kang, D. H., Kim, C. W., Lee, J. M., et al. (2007). Shape deformity of the corpus striatum in obsessive–compulsive disorder. Psychiatry Research, 155, 257264.CrossRefGoogle ScholarPubMed
Clark, A. S., & Goldman-Rakic, P. S. (1989). Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behavioral Neuroscience, 103, 12871295.CrossRefGoogle ScholarPubMed
Clark, A. S., MacLusky, N. J., & Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey. Endocrinology, 123, 932940.Google Scholar
Cosgrove, G. R., & Rauch, S. L. (2003). Stereotactic cingulotomy. Neurosurgery Clinics of North America, 14, 225235.Google Scholar
Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., et al. (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672682.Google Scholar
Crawford, T. J., Bennett, D., Lekwuwa, G., Shaunak, S., & Deakin, J. F. (2002). Cognition and the inhibitory control of saccades in schizophrenia and Parkinson's disease. Progress in Brain Research, 140, 449466.CrossRefGoogle ScholarPubMed
Cummings, J. L., & Cunningham, K. (1992). Obsessive–compulsive disorder in Huntington's disease. Biological Psychiatry, 31, 263270.CrossRefGoogle ScholarPubMed
Dager, S. R., & Steen, R. G. (1992). Applications of magnetic resonance spectroscopy to the investigation of neuropsychiatric disorders. Neuropsychopharmacology, 6, 249266.Google Scholar
Dale, R. C., Heyman, I., Giovannoni, G., & Church, A. W. (2005). Incidence of anti-brain antibodies in children with obsessive–compulsive disorder. British Journal of Psychiatry, 187, 314319.Google Scholar
De Marchi, N., & Mennella, R. (2000). Huntington's disease and its association with psychopathology. Harvard Review of Psychiatry, 7, 278289.CrossRefGoogle ScholarPubMed
Deckersbach, T., Savage, C. R., Curran, T., Bohne, A., Wilhelm, S., Baer, L., et al. (2002). A study of parallel implicit and explicit information processing in patients with obsessive–compulsive disorder. American Journal of Psychiatry, 159, 17801782.CrossRefGoogle ScholarPubMed
Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345356.CrossRefGoogle ScholarPubMed
DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13, 281285.Google Scholar
Diler, R. S., Kibar, M., & Avci, A. (2004). Pharmacotherapy and regional cerebral blood flow in children with obsessive compulsive disorder. Yonsei Medical Journal, 45, 9099.Google Scholar
do Rosario-Campos, M. C., Leckman, J. F., Curi, M., Quatrano, S., Katsovitch, L., Miguel, E. C., et al. (2005). A family study of early-onset obsessive–compulsive disorder. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 136, 9297.Google Scholar
Earp, J. D. (1979). Psychosurgery: The position of the Canadian psychiatric association. Canadian Journal of Psychiatry, 24, 353364.CrossRefGoogle ScholarPubMed
Ebert, D., Speck, O., Konig, A., Berger, M., Hennig, J., & Hohagen, F. (1997). 1H-magnetic resonance spectroscopy in obsessive–compulsive disorder: Evidence for neuronal loss in the cingulate gyrus and the right striatum. Psychiatry Research, 74, 173176.CrossRefGoogle ScholarPubMed
Ebisu, T., Rooney, W. D., Graham, S. H., Weiner, M. W., & Maudsley, A. A. (1994). N-Acetylaspartate as an in vivo marker of neuronal viability in kainate-induced status epilepticus: 1H magnetic resonance spectroscopic imaging. Journal of Cerebral Blood Flow and Metabolism, 14, 373382.Google Scholar
Eichstedt, J. A., & Arnold, S. L. (2001). Childhood-onset obsessive–compulsive disorder: A tic-related subtype of OCD? Clinical Psychology Review, 21, 137157..CrossRefGoogle ScholarPubMed
Elliott, R., & Deakin, B. (2005). Role of the orbitofrontal cortex in reinforcement processing and inhibitory control: Evidence from functional magnetic resonance imaging studies in healthy human subjects. International Review of Neurobiology, 65, 89116.CrossRefGoogle ScholarPubMed
Elliott, R., Dolan, R. J., & Frith, C. D. (2000). Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cerebral Cortex, 10, 308317.CrossRefGoogle ScholarPubMed
Feldman, R. P., Alterman, R. L., & Goodrich, J. T. (2001). Contemporary psychosurgery and a look to the future. Journal of Neurosurgery, 95, 944956.Google Scholar
Fineberg, N. A., Saxena, S., Zohar, J., & Craig, K. J. (2007). Obsessive–compulsive disorder: Boundary issues. CNS Spectrums, 12, 359364, 367–375.CrossRefGoogle ScholarPubMed
Fitzgerald, K. D., Moore, G. J., Paulson, L. A., Stewart, C. M., & Rosenberg, D. R. (2000). Proton spectroscopic imaging of the thalamus in treatment-naive pediatric obsessive–compulsive disorder. Biological Psychiatry, 47, 174182.CrossRefGoogle ScholarPubMed
Fitzgerald, K. D., Welsh, R. C., Gehring, W. J., Abelson, J. L., Himle, J. A., Liberzon, I., et al. (2005). Error-related hyperactivity of the anterior cingulate cortex in obsessive–compulsive disorder. Biological Psychiatry, 57, 287294.Google Scholar
Flament, M. F., Whitaker, A., Rapoport, J. L., Davies, M., Berg, C. Z., Kalikow, K., et al. (1988). Obsessive compulsive disorder in adolescence: An epidemiological study. Journal of the American Academy of Child & Adolescent Psychiatry, 27, 764771.CrossRefGoogle ScholarPubMed
Foa, E. B., Steketee, G. S., & Ozarow, B. J. (1985). Behavior therapy with obsessive–compulsives: From theory to treatment. In Mavissakalian, M., Turner, S. M., & Michelson, L. (Eds.), Obsessive–compulsive disorder: Psychological and pharmacological treatment (pp. 49129). New York: Plenum Press.CrossRefGoogle Scholar
Fujii, T., Otsuka, Y., Suzuki, K., Endo, K., & Yamadori, A. (2005). Improvement of obsessive–compulsive disorder following left putaminal hemorrhage. European Neurology, 54, 166170.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (3rd ed.). Philadelphia, PA: Lippincott–Raven.Google Scholar
Gamazo-Garran, P., Soutullo, C. A., & Ortuno, F. (2002). Obsessive–compulsive disorder secondary to brain dysgerminoma in an adolescent boy: A positron emission tomography case report. Journal of Child and Adolescent Psychopharmacology, 12, 259263.CrossRefGoogle Scholar
Geller, D. A. (2006). Obsessive–compulsive and spectrum disorders in children and adolescents. Psychiatric Clinics of North America, 29, 353370.CrossRefGoogle ScholarPubMed
Geller, D. A., Biederman, J., Jones, J., Park, K., Schwartz, S., Shapiro, S., et al. (1998). Is juvenile obsessive–compulsive disorder a developmental subtype of the disorder? A review of the pediatric literature. Journal of the American Academy of Child & Adolescent Psychiatry, 37, 420427.Google Scholar
Geller, D. A., Biederman, J., Jones, J., Shapiro, S., Schwartz, S., & Park, K. S. (1998). Obsessive–compulsive disorder in children and adolescents: A review. Harvard Review of Psychiatry, 5, 260273.Google Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 11851201.Google Scholar
Giedd, J. N., Rapoport, J. L., Garvey, M. A., Perlmutter, S., & Swedo, S. E. (2000). MRI assessment of children with obsessive–compulsive disorder or tics associated with streptococcal infection. American Journal of Psychiatry, 157, 281283.CrossRefGoogle ScholarPubMed
Giedd, J. N., Rapoport, J. L., Kruesi, M. J., Parker, C., Schapiro, M. B., Allen, A. J., et al. (1995). Sydenham's chorea: Magnetic resonance imaging of the basal ganglia. Neurology, 45, 21992202.CrossRefGoogle ScholarPubMed
Giedd, J. N., Rapoport, J. L., Leonard, H. L., Richter, D., & Swedo, S. E. (1996). Case study: Acute basal ganglia enlargement and obsessive–compulsive symptoms in an adolescent boy. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 913915.Google Scholar
Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551560.Google Scholar
Gilbert, A. R., Keshavan, M. S., Diwadkar, V., Nutche, J., Macmaster, F., Easter, P. C., et al. (2008). Gray matter differences between pediatric obsessive–compulsive disorder patients and high-risk siblings: A preliminary voxel-based morphometry study. Neuroscience Letters, 435, 4550.Google Scholar
Gilbert, A. R., Moore, G. J., Keshavan, M. S., Paulson, L. A., Narula, V., Mac Master, F. P., et al. (2000). Decrease in thalamic volumes of pediatric patients with obsessive–compulsive disorder who are taking paroxetine. Archives of General Psychiatry, 57, 449456.CrossRefGoogle ScholarPubMed
Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S., Knickmeyer, R. C., et al. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 12551260.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldman, P. S., Crawford, H. T., Stokes, L. P., Galkin, T. W., & Rosvold, H. E. (1974). Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey. Science, 186, 540542.CrossRefGoogle ScholarPubMed
Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S. Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490497.Google Scholar
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 2136.CrossRefGoogle ScholarPubMed
Grachev, I. D., Breiter, H. C., Rauch, S. L., Savage, C. R., Baer, L., Shera, D. M., et al. (1998). Structural abnormalities of frontal neocortex in obsessive–compulsive disorder. Archives of General Psychiatry, 55, 181182.Google Scholar
Grados, M. A., Riddle, M. A., Samuels, J. F., Liang, K. Y., Hoehn-Saric, R., Bienvenu, O. J., et al. (2001). The familial phenotype of obsessive–compulsive disorder in relation to tic disorders: The Hopkins OCD family study. Biological Psychiatry, 50, 559565.Google Scholar
Grados, M. A., Vasa, R. A., Riddle, M. A., Slomine, B. S., Salorio, C., Christensen, J., et al. (2008). New onset obsessive–compulsive symptoms in children and adolescents with severe traumatic brain injury. Depression and Anxiety, 25, 398407.CrossRefGoogle ScholarPubMed
Graybiel, A. M., & Rauch, S. L. (2000). Toward a neurobiology of obsessive–compulsive disorder. Neuron, 28, 343347.Google Scholar
Greenberg, B. D., Murphy, D. L., & Rasmussen, S. A. (2000). Neuroanatomically based approaches to obsessive–compulsive disorder. Neurosurgery and transcranial magnetic stimulation. Psychiatric Clinics of North America, 23, 671686, xii.Google Scholar
Greenberg, B. D., Price, L. H., Rauch, S. L., Friehs, G., Noren, G., Malone, D., et al. (2003). Neurosurgery for intractable obsessive–compulsive disorder and depression: Critical issues. Neurosurgery Clinics of North America, 14, 199212.CrossRefGoogle ScholarPubMed
Gu, B. M., Park, J. Y., Kang, D. H., Lee, S. J., Yoo, S. Y., Jo, H. J., et al. (2008). Neural correlates of cognitive inflexibility during task-switching in obsessive–compulsive disorder. Brain, 131, 155164.Google Scholar
Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317330.CrossRefGoogle ScholarPubMed
Hallett, J. J., Harling-Berg, C. J., Knopf, P. M., Stopa, E. G., & Kiessling, L. S. (2000). Anti-striatal antibodies in Tourette syndrome cause neuronal dysfunction. Journal of Neuroimmunology, 111, 195202.CrossRefGoogle ScholarPubMed
Harris, K., & Singer, H. S. (2006). Tic disorders: Neural circuits, neurochemistry, and neuroimmunology. Journal of Child Neurology, 21, 678689.Google Scholar
Harrison, B. J., Yucel, M., Shaw, M., Kyrios, M., Maruff, P., Brewer, W. J., et al. (2006). Evaluating brain activity in obsessive–compulsive disorder: Preliminary insights from a multivariate analysis. Psychiatry Research, 147, 227231.Google Scholar
Hoekstra, P. J., & Minderaa, R. B. (2005). Tic disorders and obsessive–compulsive disorder: Is autoimmunity involved? International Review of Psychiatry, 17, 497502.Google Scholar
Hong, S. B., Shin, Y. W., Kim, S. H., Yoo, S. Y., Lee, J. M., Kim, I. Y., et al. (2007). Hippocampal shape deformity analysis in obsessive–compulsive disorder. European Archives of Psychiatry and Clinical Neuroscience, 257, 185190.Google Scholar
Horwath, E., & Weissman, M. M. (2000). The epidemiology and cross-national presentation of obsessive–compulsive disorder. Psychiatric Clinics of North America, 23, 493507.Google Scholar
Hoshi, E., Tremblay, L., Feger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8, 14911493.Google Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.Google Scholar
Jang, J. H., Kwon, J. S., Jang, D. P., Moon, W. J., Lee, J. M., Ha, T. H., et al. (2006). A proton MRSI study of brain n-acetylaspartate level after 12 weeks of citalopram treatment in drug-naive patients with obsessive–compulsive disorder. American Journal of Psychiatry, 163, 12021207.CrossRefGoogle ScholarPubMed
Jenike, M. A. (1998). Neurosurgical treatment of obsessive–compulsive disorder. British Journal of Psychiatry, 173(Suppl. 35), 7990.Google Scholar
Jenike, M. A., Breiter, H. C., Baer, L., Kennedy, D. N., Savage, C. R., Olivares, M. J., et al. (1996). Cerebral structural abnormalities in obsessive–compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Archives of General Psychiatry, 53, 625632.CrossRefGoogle ScholarPubMed
Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114 (Pt. 5), 20372049.CrossRefGoogle ScholarPubMed
Joel, D. (2006). Current animal models of obsessive compulsive disorder: A critical review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 374388.CrossRefGoogle ScholarPubMed
Kanemura, H., Aihara, M., Aoki, S., Araki, T., & Nakazawa, S. (2003). Development of the prefrontal lobe in infants and children: A three-dimensional magnetic resonance volumetric study. Brain and Development, 25, 195199.Google Scholar
Kang, D. H., Kim, J. J., Choi, J. S., Kim, Y. I., Kim, C. W., Youn, T., et al. (2004). Volumetric investigation of the frontal–subcortical circuitry in patients with obsessive–compulsive disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 342349.Google Scholar
Karno, M., Golding, J. M., Sorenson, S. B., & Burnam, M. A. (1988). The epidemiology of obsessive–compulsive disorder in five US communities. Archives of General Psychiatry, 45, 10941099.CrossRefGoogle ScholarPubMed
Kellner, C. H., Jolley, R. R., Holgate, R. C., Austin, L., Lydiard, R. B., Laraia, M., et al. (1991). Brain MRI in obsessive–compulsive disorder. Psychiatry Research, 36, 4549.CrossRefGoogle ScholarPubMed
Kelly, D., Richardson, A., Mitchell-Heggs, N., Greenup, J., Chen, C., & Hafner, R. J. (1973). Stereotactic limbic leucotomy: A preliminary report on forty patients. British Journal of Psychiatry, 123, 141148.Google Scholar
Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience, 23, 84328444.CrossRefGoogle ScholarPubMed
Kiessling, L. S., Marcotte, A. C., & Culpepper, L. (1994). Antineuronal antibodies: Tics and obsessive–compulsive symptoms. Journal of Developmental and Behavioral Pediatrics, 15, 421425.Google Scholar
Kim, J. J., Lee, M. C., Kim, J., Kim, I. Y., Kim, S. I., Han, M. H., et al. (2001). Grey matter abnormalities in obsessive–compulsive disorder: Statistical parametric mapping of segmented magnetic resonance images. British Journal of Psychiatry, 179, 330334.Google Scholar
Kim, K. W., & Lee, D. Y. (2002). Obsessive–compulsive disorder associated with a left orbitofrontal infarct. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 8889.CrossRefGoogle ScholarPubMed
Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E., & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study. NeuroReport, 10, 28172821.Google Scholar
Knight, G. C. (1964). The orbital cortex as an objective in the surgical treatment of mental illness: The development of a stereotactic approach. British Journal of Surgery, 51, 114124.Google Scholar
Koenderink, M. J., Uylings, H. B., & Mrzljak, L. (1994). Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex: A quantitative Golgi analysis. Brain Research, 653, 173182.CrossRefGoogle ScholarPubMed
Kolb, B., Pellis, S., & Robinson, T. E. (2004). Plasticity and functions of the orbital frontal cortex. Brain and Cognition, 55, 104115.CrossRefGoogle ScholarPubMed
Koran, L. M. (2000). Quality of life in obsessive–compulsive disorder. Psychiatric Clinics of North America, 23, 509517.Google Scholar
Koran, L. M., Thienemann, M. L., & Davenport, R. (1996). Quality of life for patients with obsessive–compulsive disorder. American Journal of Psychiatry, 153, 783788.Google Scholar
Korff, S., & Harvey, B. H. (2006). Animal models of obsessive–compulsive disorder: Rationale to understanding psychobiology and pharmacology. Psychiatric Clinics of North America, 29, 371390.Google Scholar
Kretschmann, H. J., Kammradt, G., Krauthausen, I., Sauer, B., & Wingert, F. (1986). Brain growth in man. In Kretschmann, H. J. (Ed.), Brain growth (pp. 126). Basel: Karger.Google Scholar
Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341372.CrossRefGoogle ScholarPubMed
Kroll, L., & Drummond, L. M. (1993). Temporal lobe epilepsy and obsessive–compulsive symptoms. Journal of Nervous and Mental Disease, 181, 457458.Google Scholar
Kurlan, R. (2004). The PANDAS hypothesis: Losing its bite? Movement Disorders, 19, 371374.Google Scholar
Kurlan, R., & Kaplan, E. L. (2004). The pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) etiology for tics and obsessive–compulsive symptoms: Hypothesis or entity? Practical considerations for the clinician. Pediatrics, 113, 883886.Google Scholar
Kwon, J. S., Shin, Y. W., Kim, C. W., Kim, Y. I., Youn, T., Han, M. H., et al. (2003). Similarity and disparity of obsessive–compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus–amygdala complex. Journal of Neurology, Neurosurgery and Psychiatry, 74, 962964.Google Scholar
Laplane, D., Levasseur, M., Pillon, B., Dubois, B., Baulac, M., Mazoyer, B., et al. (1989). Obsessive–compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain, 112(Pt. 3), 699725.CrossRefGoogle ScholarPubMed
Larson, E. R., Shear, P. K., Krikorian, R., Welge, J., & Strakowski, S. M. (2005). Working memory and inhibitory control among manic and euthymic patients with bipolar disorder. Journal of the International Neuropsychological Society, 11, 163172.CrossRefGoogle ScholarPubMed
Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. NeuroReport, 16, 18931897.CrossRefGoogle ScholarPubMed
Lázaro, L., Caldú, X., Junqué, C., Bargalló, N., Andrés, S., Morer, A., et al. (2008). Cerebral activation in children and adolescents with obsessive–compulsive disorder before and after treatment: A functional MRI study. Journal of Psychiatric Research, 23, 2430.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2007). The amygdala. Current Biology, 17, R868R874.Google Scholar
Lehericy, S., Ducros, M., Van de Moortele, P. F., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55, 522529.Google Scholar
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 10651073.CrossRefGoogle ScholarPubMed
Leonard, H. L., & Swedo, S. E. (2001). Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). International Journal of Neuropsychopharmacology, 4, 191198.Google Scholar
Li, C. S., & Sinha, R. (2008). Inhibitory control and emotional stress regulation: Neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neuroscience and Biobehavioral Reviews, 32, 581597.CrossRefGoogle ScholarPubMed
Loiselle, C. R., Lee, O., Moran, T. H., & Singer, H. S. (2004). Striatal microinfusion of Tourette syndrome and PANDAS sera: Failure to induce behavioral changes. Movement Disorders, 19, 390396.Google Scholar
Lopez-Rodriguez, F., Gunay, I., & Glaser, N. (1997). Obsessive compulsive disorder in a woman with left basal ganglia infarct: A case report. Behavioural Neurology, 10, 101103.Google Scholar
Luders, E., Narr, K. L., Thompson, P. M., Woods, R. P., Rex, D. E., Jancke, L., et al. (2005). Mapping cortical gray matter in the young adult brain: Effects of gender. NeuroImage, 26, 493501.CrossRefGoogle Scholar
Luxenberg, J. S., Swedo, S. E., Flament, M. F., Friedland, R. P., Rapoport, J., & Rapoport, S. I. (1988). Neuroanatomical abnormalities in obsessive–compulsive disorder detected with quantitative x-ray computed tomography. American Journal of Psychiatry, 145, 10891093.Google Scholar
MacLusky, N. J., Clark, A. S., Naftolin, F., & Goldman-Rakic, P. S. (1987). Estrogen formation in the mammalian brain: Possible role of aromatase in sexual differentiation of the hippocampus and neocortex. Steroids, 50, 459474.Google Scholar
MacLusky, N. J., Naftolin, F., & Goldman-Rakic, P. S. (1986). Estrogen formation and binding in the cerebral cortex of the developing rhesus monkey. Proceedings of the National Academy of Sciences of the United States of America, 83, 513516.Google Scholar
MacMaster, F. P., Russell, A., Mirza, Y., Keshavan, M. S., Banerjee, S. P., Bhandari, R., et al. (2006). Pituitary volume in pediatric obsessive–compulsive disorder. Biological Psychiatry, 59, 252257.Google Scholar
Maier, M. (1995). In vivo magnetic resonance spectroscopy: Applications in psychiatry. British Journal of Psychiatry, 167, 299306.Google Scholar
Malhi, G. S., & Bartlett, J. R. (1998). A new lesion for the psychosurgical operation of stereotactic subcaudate tractotomy (SST). British Journal of Neurosurgery, 12, 335339.Google Scholar
Malhi, G. S., & Bartlett, J. R. (2000). Depression: A role for neurosurgery? British Journal of Neurosurgery, 14, 415422; discussion 423.Google Scholar
Maltby, N., Tolin, D. F., Worhunsky, P., O'Keefe, T. M., & Kiehl, K. A. (2005). Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive–compulsive disorder: An event-related fMRI study. NeuroImage, 24, 495503.Google Scholar
Marquardt, R. K., Levitt, J. G., Blanton, R. E., Caplan, R., Asarnow, R., Siddarth, P., et al. (2005). Abnormal development of the anterior cingulate in childhood-onset schizophrenia: A preliminary quantitative MRI study. Psychiatry Research, 138, 221233.CrossRefGoogle ScholarPubMed
Marsh, R., Leckman, J. F., Bloch, M. H., Yazgan, Y., & Peterson, B. S. (2008). Tics and compulsions: Disturbances of self-regulatory control in the development of habitual behaviors. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 717737). Cambridge, MA: MIT Press.Google Scholar
Mataix-Cols, D., Cullen, S., Lange, K., Zelaya, F., Andrew, C., Amaro, E., et al. (2003). Neural correlates of anxiety associated with obsessive–compulsive symptom dimensions in normal volunteers. Biological Psychiatry, 53, 482493.Google Scholar
Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., et al. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral Cortex, 11, 335342.Google Scholar
Max, J. E., SmithW. L., Jr. W. L., Jr., Lindgren, S. D., Robin, D. A., Mattheis, P., Stierwalt, J., et al. (1995). Case study: Obsessive–compulsive disorder after severe traumatic brain injury in an adolescent. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 4549.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O'Doherty, J., Ashburner, J., Frackowiak, R. S., et al. (2004). Structural plasticity in the bilingual brain. Nature, 431, 757.Google Scholar
Mega, M. S., & Cummings, J. L. (2001). Frontal subcortical circuits. In Salloway, S., Malloy, P., & Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (1st ed., pp. 1532). Washington, DC: American Psychiatric Publishers.Google Scholar
Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: The orbitofronto-striatal model revisited. Neuroscience and Biobehavioral Reviews, 32, 525549.Google Scholar
Mesulam, M. M., & Mufson, E. J. (1982). Insula of the old world monkey. III: Efferent cortical output and comments on function. Journal of Comparative Neurology, 212, 3852.Google Scholar
Middleton, F. A., & Strick, P. L. (1997). Dentate output channels: Motor and cognitive components. Progress in Brain Research, 114, 553566.Google Scholar
Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236250.Google Scholar
Middleton, F. A., & Strick, P. L. (2001a). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700712.Google Scholar
Middleton, F. A., & Strick, P. L. (2001b). A revised neuroanatomy of frontal-subcortical circuits. In Lichter, D. G. & Cummings, J. L. (Eds.), Frontal–subcortical circuits in psychiatric and neurological disorders. New York: Guilford Press.Google Scholar
Miller, L. A., Taber, K. H., Gabbard, G. O., & Hurley, R. A. (2005). Neural underpinnings of fear and its modulation: Implications for anxiety disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 17, 16.CrossRefGoogle ScholarPubMed
Mindus, P., Rasmussen, S. A., Lindquist, C., & Noren, G. (2001). Neurosurgical treatment for refractory obsessive–compulsive disorder: Implications for understanding frontal lobe function. In Salloway, S., Malloy, P., & Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (pp. 233245). Washington, DC: American Psychiatric Publishing.Google Scholar
Mirza, Y., O'Neill, J., Smith, E. A., Russell, A., Smith, J. M., Banerjee, S. P., et al. (2006). Increased medial thalamic creatine-phosphocreatine found by proton magnetic resonance spectroscopy in children with obsessive–compulsive disorder versus major depression and healthy controls. Journal of Child Neurology, 21, 106111.CrossRefGoogle ScholarPubMed
Monaco, F., Cavanna, A., Magli, E., Barbagli, D., Collimedaglia, L., Cantello, R., et al. (2005). Obsessionality, obsessive–compulsive disorder, and temporal lobe epilepsy. Epilepsy and Behavior, 7, 491496.CrossRefGoogle ScholarPubMed
Mufson, E. J., & Mesulam, M. M. (1982). Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. Journal of Comparative Neurology, 212, 2337.CrossRefGoogle ScholarPubMed
Murphy, M. L., & Pichichero, M. E. (2002). Prospective identification and treatment of children with pediatric autoimmune neuropsychiatric disorder associated with group A streptococcal infection (PANDAS). Archives of Pediatrics and Adolescent Medicine, 156, 356361.Google Scholar
Murphy, T. K., Husted, D. S., & Edge, P. J. (2006). Preclinical/clinical evidence of central nervous system infectious etiology in PANDAS. Advances in Neurology, 99, 148158.Google Scholar
Murphy, T. K., Sajid, M. W., & Goodman, W. K. (2006). Immunology of obsessive–compulsive disorder. Psychiatric Clinics of North America, 29, 445469.Google Scholar
Nakao, T., Nakagawa, A., Yoshiura, T., Nakatani, E., Nabeyama, M., Yoshizato, C., et al. (2005a). A functional MRI comparison of patients with obsessive–compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Research, 139, 101114.Google Scholar
Nakao, T., Nakagawa, A., Yoshiura, T., Nakatani, E., Nabeyama, M., Yoshizato, C., et al. (2005b). Brain activation of patients with obsessive–compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: A functional magnetic resonance imaging study. Biological Psychiatry, 57, 901910.Google Scholar
Nestadt, G., Lan, T., Samuels, J., Riddle, M., Bienvenu, O. J. III, Liang, K. Y., et al. (2000). Complex segregation analysis provides compelling evidence for a major gene underlying obsessive–compulsive disorder and for heterogeneity by sex. American Journal of Human Genetics, 67, 16111616.Google Scholar
Newcombe, R. (1975). The lesion in stereotactic subcaudate tractotomy. British Journal of Psychiatry, 126, 478481.Google Scholar
Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychological Bulletin, 127, 571598.Google Scholar
O'Doherty, J. P. (2007). Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices. Annals of the New York Academy of Sciences, 1121, 254272.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 12151229.Google Scholar
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249.Google Scholar
Ogai, M., Iyo, M., Mori, N., & Takei, N. (2005). A right orbitofrontal region and OCD symptoms: A case report. Acta Psychiatrica Scandinavica, 111, 7477.Google Scholar
Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206219.Google Scholar
Overman, W. H. (2004). Sex differences in early childhood, adolescence, and adulthood on cognitive tasks that rely on orbital prefrontal cortex. Brain and Cognition, 55, 134147.Google Scholar
Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563593.Google Scholar
Pascual-Leone, A. (2001). The brain that plays music and is changed by it. Annals of the New York Academy of Sciences, 930, 315329.Google Scholar
Pauls, D. L., Alsobrook, J. P., Goodman, W., Rasmussen, S., & Leckman, J. F. (1995). A family study of obsessive–compulsive disorder. American Journal of Psychiatry, 152, 7684.Google Scholar
Perlmutter, S. J., Leitman, S. F., Garvey, M. A., Hamburger, S., Feldman, E., Leonard, H. L., et al. (1999). Therapeutic plasma exchange and intravenous immunoglobulin for obsessive–compulsive disorder and tic disorders in childhood. Lancet, 354, 11531158.CrossRefGoogle ScholarPubMed
Petanjek, Z., Judas, M., Kostovic, I., & Uylings, H. B. (2008). Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: A layer-specific pattern. Cerebral Cortex, 18, 915929.Google Scholar
Peterson, B. S. (2003). Conceptual, methodological, and statistical challenges in brain imaging studies of developmentally based psychopathologies. Development and Psychopathology, 15, 811832.Google Scholar
Peterson, B. S., Skudlarski, P., Anderson, A. W., Zhang, H., Gatenby, J. C., Lacadie, C. M., et al. (1998). A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Archives of General Psychiatry, 55, 326333.Google Scholar
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874887.Google Scholar
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187.Google Scholar
Posner, M. I., & Rothbart, M. K. (1998). Attention, self-regulation and consciousness. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 19151927.Google Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective, & Behavioral Neuroscience 7, 391395.Google Scholar
Pujol, J., Soriano-Mas, C., Alonso, P., Cardoner, N., Menchon, J. M., Deus, J., et al. (2004). Mapping structural brain alterations in obsessive–compulsive disorder. Archives of General Psychiatry, 61, 720730.Google Scholar
Pujol, J., Torres, L., Deus, J., Cardoner, N., Pifarre, J., Capdevila, A., et al. (1999). Functional magnetic resonance imaging study of frontal lobe activation during word generation in obsessive–compulsive disorder. Biological Psychiatry, 45, 891897.Google Scholar
Quraishi, S., & Frangou, S. (2002). Neuropsychology of bipolar disorder: A review. Journal of Affective Disorders, 72, 209226.Google Scholar
Rabinowicz, T., Dean, D. E., Petetot, J. M., & de Courten-Myers, G. M. (1999). Gender differences in the human cerebral cortex: More neurons in males; more processes in females. Journal of Child Neurology, 14, 98107.Google Scholar
Rachman, S., & Hodgson, R. J. (1980). Obsessions and compulsions. Englewood Cliffs, NJ: Prentice–Hall.Google Scholar
Rasmussen, S. A., & Eisen, J. L. (2002). The course and clinical features of obsessive–compulsive disorder. In Davis, K. L., Charney, D. S., Coyle, J. T., & Nemeroff, C. (Eds.), Neuropsychopharmacology: The fifth generation of progress (pp. 15931608). Nashville, TN: American College of Neuropsychopharmacology.Google Scholar
Rauch, S. L., Jenike, M. A., Alpert, N. M., Baer, L., Breiter, H. C., Savage, C. R., et al. (1994). Regional cerebral blood flow measured during symptom provocation in obsessive–compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Archives of General Psychiatry, 51, 6270.Google Scholar
Rauch, S. L., Kim, H., Makris, N., Cosgrove, G. R., Cassem, E. H., Savage, C. R., et al. (2000). Volume reduction in the caudate nucleus following stereotactic placement of lesions in the anterior cingulate cortex in humans: A morphometric magnetic resonance imaging study. Journal of Neurosurgery, 93, 10191025.Google Scholar
Rauch, S. L., Savage, C. R., Alpert, N. M., Dougherty, D., Kendrick, A., Curran, T., et al. (1997). Probing striatal function in obsessive–compulsive disorder: A PET study of implicit sequence learning. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 568573.Google Scholar
Rauch, S. L., Shin, L. M., & Wright, C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Annals of the New York Academy of Sciences, 985, 389410.Google Scholar
Rauch, S. L., Wedig, M. M., Wright, C. I., Martis, B., McMullin, K. G., Shin, L. M., et al. (2007). Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive–compulsive disorder. Biological Psychiatry, 61, 330336.Google Scholar
Rauch, S. L., Whalen, P. J., Curran, T., Shin, L. M., Coffey, B. J., Savage, C. R., et al. (2001). Probing striato-thalamic function in obsessive–compulsive disorder and Tourette syndrome using neuroimaging methods. Advances in Neurology, 85, 207224.Google ScholarPubMed
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt. 5), 17631774.Google Scholar
Remijnse, P. L., Nielen, M. M., van Balkom, A. J., Cath, D. C., van Oppen, P., Uylings, H. B., et al. (2006). Reduced orbitofrontal–striatal activity on a reversal learning task in obsessive–compulsive disorder. Archives of General Psychiatry, 63, 12251236.Google Scholar
Richardson, A. (1973). Stereotactic limbic leucotomy: Surgical technique. Postgraduate Medical Journal, 49, 860864.Google Scholar
Riffkin, J., Yucel, M., Maruff, P., Wood, S. J., Soulsby, B., Olver, J., et al. (2005). A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive–compulsive disorder: Comparison with healthy controls and patients with schizophrenia. Psychiatry Research, 138, 99113.Google Scholar
Rizzo, R., Gulisano, M., Pavone, P., Fogliani, F., & Robertson, M. M. (2006). Increased antistreptococcal antibody titers and anti-basal ganglia antibodies in patients with Tourette syndrome: Controlled cross-sectional study. Journal of Child Neurology, 21, 747753.Google Scholar
Robins, L. N., Helzer, J. E., Weissman, M. M., Orvaschel, H., Gruenberg, E., Burke, J. D. Jr., et al. (1984). Lifetime prevalence of specific psychiatric disorders in three sites. Archives of General Psychiatry, 41, 949958.Google Scholar
Robinson, D., Wu, H., Munne, R. A., Ashtari, M., Alvir, J. M., Lerner, G., et al. (1995). Reduced caudate nucleus volume in obsessive–compulsive disorder. Archives of General Psychiatry, 52, 393398.Google Scholar
Robinson, L. J., Thompson, J. M., Gallagher, P., Goswami, U., Young, A. H., Ferrier, I. N., et al. (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders, 93, 105115.Google Scholar
Rodrigo Escalona, P., Adair, J. C., Roberts, B. B., & Graeber, D. A. (1997). Obsessive–compulsive disorder following bilateral globus pallidus infarction. Biological Psychiatry, 42, 410412.Google Scholar
Rolls, E. T. (1996). The orbitofrontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351, 14331444.Google ScholarPubMed
Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.Google Scholar
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 1129.Google Scholar
Rosenberg, D. R., Amponsah, A., Sullivan, A., MacMillan, S., & Moore, G. J. (2001). Increased medial thalamic choline in pediatric obsessive–compulsive disorder as detected by quantitative in vivo spectroscopic imaging. Journal of Child Neurology, 16, 636641.Google Scholar
Rosenberg, D. R., Benazon, N. R., Gilbert, A., Sullivan, A., & Moore, G. J. (2000). Thalamic volume in pediatric obsessive–compulsive disorder patients before and after cognitive behavioral therapy. Biological Psychiatry, 48, 294300.Google Scholar
Rosenberg, D. R., & Keshavan, M. S. (1998). A.E. Bennett research award. Toward a neurodevelopmental model of obsessive–compulsive disorder. Biological Psychiatry, 43, 623640.Google Scholar
Rosenberg, D. R., Keshavan, M. S., O'Hearn, K. M., Dick, E. L., Bagwell, W. W., Seymour, A. B., et al. (1997). Frontostriatal measurement in treatment-naive children with obsessive–compulsive disorder. Archives of General Psychiatry, 54, 824830.Google Scholar
Roth, R. M., Saykin, A. J., Flashman, L. A., Pixley, H. S., West, J. D., & Mamourian, A. C. (2007). Event-related functional magnetic resonance imaging of response inhibition in obsessive–compulsive disorder. Biological Psychiatry, 62, 901909.Google Scholar
Russell, A., Cortese, B., Lorch, E., Ivey, J., Banerjee, S. P., Moore, G. J., et al. (2003). Localized functional neurochemical marker abnormalities in dorsolateral prefrontal cortex in pediatric obsessive–compulsive disorder. Journal of Child and Adolescent Psychopharmacology, 13(Suppl. 1), S31S38.CrossRefGoogle ScholarPubMed
Sahni, D., Jit, I., & Sodhi, L. (1998). Brain weight of Northwest Indian children and adolescents. American Journal of Human Biology, 10, 505509.Google Scholar
Sasson, Y., Zohar, J., Chopra, M., Lustig, M., Iancu, I., & Hendler, T. (1997). Epidemiology of obsessive–compulsive disorder: A world view. Journal of Clinical Psychiatry, 58(Suppl. 12), 710.Google Scholar
Saxena, S., Bota, R. G., & Brody, A. L. (2001). Brain-behavior relationships in obsessive–compulsive disorder. Seminars in Clinical Neuropsychiatry, 6, 82101.Google Scholar
Saxena, S., Brody, A. L., Schwartz, J. M., & Baxter, L. R. (1998). Neuroimaging and frontal–subcortical circuitry in obsessive–compulsive disorder. British Journal of Psychiatry, 173(Suppl. 35), 2637.Google Scholar
Saxena, S., & Rauch, S. L. (2000). Functional neuroimaging and the neuroanatomy of obsessive–compulsive disorder. Psychiatric Clinics of North America, 23, 563586.Google Scholar
Scarone, S., Colombo, C., Livian, S., Abbruzzese, M., Ronchi, P., Locatelli, M., et al. (1992). Increased right caudate nucleus size in obsessive–compulsive disorder: Detection with magnetic resonance imaging. Psychiatry Research, 45, 115121.Google Scholar
Schlaug, G. (2001). The brain of musicians. A model for functional and structural adaptation. Annals of the New York Academy of Sciences, 930, 281299.Google Scholar
Schlaug, G., Norton, A., Overy, K., & Winner, E. (2005). Effects of music training on the child's brain and cognitive development. Annals of the New York Academy of Sciences, 1060, 219230.CrossRefGoogle ScholarPubMed
Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10, 272284.Google Scholar
Schwartz, J. M. (1998). Neuroanatomical aspects of cognitive–behavioural therapy response in obsessive–compulsive disorder. An evolving perspective on brain and behaviour. British Journal of Psychiatry, 173(Suppl. 35), 3844.Google Scholar
Scicutella, A. (2000). Late-life obsessive–compulsive disorder and Huntington's disease. Journal of Neuropsychiatry and Clinical Neurosciences, 12, 288289.Google Scholar
Shafran, R., & Speckens, A. (2005). Reply to Rosenberg et al. Biological versus psychological approaches to OCD: War or peace? In Abramowitz, J. S. & Houts, A. C. (Eds.), Concepts and controversies in obsessive–compulsive disorder (pp. 255260). New York: Springer.Google Scholar
Shin, Y. W., Yoo, S. Y., Lee, J. K., Ha, T. H., Lee, K. J., Lee, J. M., et al. (2007). Cortical thinning in obsessive compulsive disorder. Human Brain Mapping, 28, 11281135.Google Scholar
Singer, H. S. (1999). PANDAS and immunomodulatory therapy. Lancet, 354, 11371138.Google Scholar
Singer, H. S., Giuliano, J. D., Hansen, B. H., Hallett, J. J., Laurino, J. P., Benson, M., et al. (1998). Antibodies against human putamen in children with Tourette syndrome. Neurology, 50, 16181624.Google Scholar
Singer, H. S., & Loiselle, C. (2003). PANDAS: A commentary. Journal of Psychosomatic Research, 55, 3139.Google Scholar
Singer, H. S., Loiselle, C. R., Lee, O., Minzer, K., Swedo, S., & Grus, F. H. (2004). Anti-basal ganglia antibodies in PANDAS. Movement Disorders, 19, 406415.Google Scholar
Singer, H. S., Mink, J. W., Loiselle, C. R., Burke, K. A., Ruchkina, I., Morshed, S., et al. (2005). Microinfusion of antineuronal antibodies into rodent striatum: Failure to differentiate between elevated and low titers. Journal of Neuroimmunology, 163, 814.Google Scholar
Smith, E. A., Russell, A., Lorch, E., Banerjee, S. P., Rose, M., Ivey, J., et al. (2003). Increased medial thalamic choline found in pediatric patients with obsessive–compulsive disorder versus major depression or healthy control subjects: A magnetic resonance spectroscopy study. Biological Psychiatry, 54, 13991405.Google Scholar
Snider, L. A., Lougee, L., Slattery, M., Grant, P., & Swedo, S. E. (2005). Antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Biological Psychiatry, 57, 788792.Google Scholar
Snider, L. A., & Swedo, S. E. (2004). PANDAS: Current status and directions for research. Molecular Psychiatry, 9, 900907.Google Scholar
Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., et al. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17, 15501560.Google Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309315.Google Scholar
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859861.Google Scholar
Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 82238231.Google Scholar
Sowell, E. R., Trauner, D. A., Gamst, A., & Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study. Developmental Medicine and Child Neurology, 44, 416.Google Scholar
Stewart, S. E., Geller, D. A., Jenike, M., Pauls, D., Shaw, D., Mullin, B., et al. (2004). Long-term outcome of pediatric obsessive–compulsive disorder: A meta-analysis and qualitative review of the literature. Acta Psychiatrica Scandinavica, 110, 413.Google Scholar
Sumitani, S., Harada, M., Kubo, H., & Ohmori, T. (2007). Proton magnetic resonance spectroscopy reveals an abnormality in the anterior cingulate of a subgroup of obsessive–compulsive disorder patients. Psychiatry Research, 154, 8592.Google Scholar
Swedo, S. E., Leonard, H. L., Garvey, M., Mittleman, B., Allen, A. J., Perlmutter, S., et al. (1998). Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: Clinical description of the first 50 cases. American Journal of Psychiatry, 155, 264271.Google Scholar
Swedo, S. E., Leonard, H. L., Schapiro, M. B., Casey, B. J., Mannheim, G. B., Lenane, M. C., et al. (1993). Sydenham's chorea: Physical and psychological symptoms of St Vitus dance. Pediatrics, 91, 706713.Google Scholar
Swedo, S. E., Rapoport, J. L., Cheslow, D. L., Leonard, H. L., Ayoub, E. M., Hosier, D. M., et al. (1989). High prevalence of obsessive–compulsive symptoms in patients with Sydenham's chorea. American Journal of Psychiatry, 146, 246249.Google Scholar
Swoboda, K. J., & Jenike, M. A. (1995). Frontal abnormalities in a patient with obsessive–compulsive disorder: The role of structural lesions in obsessive–compulsive behavior. Neurology, 45, 21302134.Google Scholar
Szeszko, P. R., MacMillan, S., McMeniman, M., Chen, S., Baribault, K., Lim, K. O., et al. (2004). Brain structural abnormalities in psychotropic drug-naive pediatric patients with obsessive–compulsive disorder. American Journal of Psychiatry, 161, 10491056.Google Scholar
Szeszko, P. R., MacMillan, S., McMeniman, M., Lorch, E., Madden, R., Ivey, J., et al. (2004). Amygdala volume reductions in pediatric patients with obsessive–compulsive disorder treated with paroxetine: Preliminary findings. Neuropsychopharmacology, 29, 826832.Google Scholar
Szeszko, P. R., Robinson, D., Alvir, J. M., Bilder, R. M., Lencz, T., Ashtari, M., et al. (1999). Orbital frontal and amygdala volume reductions in obsessive–compulsive disorder. Archives of General Psychiatry, 56, 913919.Google Scholar
Talairach, J., Hecaen, H., David, M., Monnier, J., & Ajuriaguerra, J. (1949). Recherches sur la coagulation thérapeutique des structures sous-corticales chez l'homme. Revue Neurologique, 81, 424.Google Scholar
Taren, J. A., Curtis, G. C., & Gebarski, S. S. (1994). Late local and remote structural changes after capsulotomy for obsessive compulsive disorder. Stereotactic and Functional Neurosurgery, 63, 16.Google Scholar
Taylor, J. R., Morshed, S. A., Parveen, S., Mercadante, M. T., Scahill, L., Peterson, B. S., et al. (2002). An animal model of Tourette's syndrome. American Journal of Psychiatry, 159, 657660.Google Scholar
Taylor, S. (2005). Dimensional and subtype models of OCD. In Abramowitz, J. S. & Houts, A. C. (Eds.), Concepts and controversies in obsessive–compulsive disorder (pp. 2741). New York: Springer.Google Scholar
Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404, 190193.Google Scholar
Ursu, S., Stenger, V. A., Shear, M. K., Jones, M. R., & Carter, C. S. (2003). Overactive action monitoring in obsessive–compulsive disorder: Evidence from functional magnetic resonance imaging. Psychological Science, 14, 347353.Google Scholar
Valente, A. A. Jr., Miguel, E. C., Castro, C. C., Amaro, E. Jr., Duran, F. L., Buchpiguel, C. A., et al. (2005). Regional gray matter abnormalities in obsessive–compulsive disorder: A voxel-based morphometry study. Biological Psychiatry, 58, 479487.Google Scholar
Valleni-Basile, L. A., Garrison, C. Z., Jackson, K. L., Waller, J. L., McKeown, R. E., Addy, C. L., et al. (1994). Frequency of obsessive–compulsive disorder in a community sample of young adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 782791.Google Scholar
van den Heuvel, O. A., Veltman, D. J., Groenewegen, H. J., Cath, D. C., van Balkom, A. J., van Hartskamp, J., et al. (2005). Frontal–striatal dysfunction during planning in obsessive–compulsive disorder. Archives of General Psychiatry, 62, 301309.Google Scholar
van den Heuvel, O. A., Veltman, D. J., Groenewegen, H. J., Witter, M. P., Merkelbach, J., Cath, D. C., et al. (2005). Disorder-specific neuroanatomical correlates of attentional bias in obsessive–compulsive disorder, panic disorder, and hypochondriasis. Archives of General Psychiatry, 62, 922933.Google Scholar
van der Wee, N. J., Ramsey, N. F., Jansma, J. M., Denys, D. A., van Megen, H. J., Westenberg, H. M., et al. (2003). Spatial working memory deficits in obsessive compulsive disorder are associated with excessive engagement of the medial frontal cortex. NeuroImage, 20, 22712280.Google Scholar
Viard, A., Flament, M. F., Artiges, E., Dehaene, S., Naccache, L., Cohen, D., et al. (2005). Cognitive control in childhood-onset obsessive–compulsive disorder: A functional MRI study. Psychological Medicine, 35, 10071017.Google Scholar
Ward, C. D. (1988). Transient feelings of compulsion caused by hemispheric lesions: Three cases. Journal of Neurology, Neurosurgery and Psychiatry, 51, 266268.Google Scholar
Weilburg, J. B., Mesulam, M. M., Weintraub, S., Buonanno, F., Jenike, M. A., & Stakes, J. W. (1989). Focal striatal abnormalities in a patient with obsessive–compulsive disorder. Archives of Neurology, 46, 233235.Google Scholar
Weisbrod, M., Kiefer, M., Marzinzik, F., & Spitzer, M. (2000). Executive control is disturbed in schizophrenia: Evidence from event-related potentials in a go/nogo task. Biological Psychiatry, 47, 5160.Google Scholar
Weiss, A. P., & Jenike, M. A. (2000). Late-onset obsessive–compulsive disorder: A case series. Journal of Neuropsychiatry and Clinical Neurosciences, 12, 265268.Google Scholar
Weissman, M. M., Bland, R. C., Canino, G. J., Greenwald, S., Hwu, H. G., Lee, C. K., et al. (1994). The cross national epidemiology of obsessive compulsive disorder. The cross national collaborative group. Journal of Clinical Psychiatry, 55(Suppl.), 510.Google Scholar
Wendlandt, J. T., Grus, F. H., Hansen, B. H., & Singer, H. S. (2001). Striatal antibodies in children with Tourette's syndrome: Multivariate discriminant analysis of IgG repertoires. Journal of Neuroimmunology, 119, 106113.Google Scholar
Whiteside, S. P., Port, J. D., & Abramowitz, J. S. (2004). A meta-analysis of functional neuroimaging in obsessive–compulsive disorder. Psychiatry Research, 132, 6979.Google Scholar
Whitty, C. W., Duffield, J. E., Tov, P. M., & Cairns, H. (1952). Anterior cingulectomy in the treatment of mental disease. Lancet, 1, 475481.Google Scholar
Wichmann, T., & DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Current Opinion in Neurobiology, 6, 751758.Google Scholar
Wilkinson, H. A., Davidson, K. M., & Davidson, R. I. (1999). Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery, 45, 11291136.Google Scholar
Woolley, J., Heyman, I., Brammer, M., Frampton, I., McGuire, P. K., & Rubia, K. (2008). Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control. British Journal of Psychiatry, 192, 2531.Google Scholar
Yakovlev, P. A., & Lecours, I. R. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 370). Oxford: Blackwell.Google Scholar
Yaryura-Tobias, J. A., & Neziroglu, F. (2003). Basal ganglia hemorrhagic ablation associated with temporary suppression of obsessive–compulsive symptoms. Revista Brasileira de Psiquiatria, 25, 4042.Google Scholar
Yoo, S. Y., Roh, M. S., Choi, J. S., Kang do, H., Ha, T. H., Lee, J. M., et al. (2008). Voxel-based morphometry study of gray matter abnormalities in obsessive–compulsive disorder. Journal of Korean Medical Science, 23, 2430.Google Scholar
Yucel, M., Harrison, B. J., Wood, S. J., Fornito, A., Wellard, R. M., Pujol, J., et al. (2007). Functional and biochemical alterations of the medial frontal cortex in obsessive–compulsive disorder. Archives of General Psychiatry, 64, 946955.Google Scholar
Yucel, M., & Lubman, D. I. (2007). Neurocognitive and neuroimaging evidence of behavioural dysregulation in human drug addiction: Implications for diagnosis, treatment and prevention. Drug and Alcohol Review, 26, 3339.Google Scholar
Zald, D. H., & Kim, S. W. (2001). The orbitofrontal cortex. In Salloway, S. P., Malloy, P. F., & Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (1st ed., pp. 3369). Washington, DC: American Psychiatric Publishing.Google Scholar
Zohar, A. H., Ratzoni, G., Pauls, D. L., Apter, A., Bleich, A., Kron, S., et al. (1992). An epidemiological study of obsessive–compulsive disorder and related disorders in Israeli adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 10571061.Google Scholar