Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T21:18:43.126Z Has data issue: false hasContentIssue false

Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment

Published online by Cambridge University Press:  02 August 2018

Dana M. Allswede*
Affiliation:
Yale University
Tyrone D. Cannon
Affiliation:
Yale University
*
Address correspondence and reprint requests to: Dana Allswede, Department of Psychology, Yale University, 2 Hillhouse Ave., PO Box 208205, New Haven, CT 06520; E-mail: dana.allswede@yale.edu.

Abstract

Prenatal inflammation is an established risk factor for schizophrenia. However, the specific inflammatory pathways that mediate this association remain unclear. Potential candidate systems include inflammatory markers produced by microglia, such as cytokines and complement. Accumulating evidence suggests that these markers play a role in typical neurodevelopmental processes, such as synapse formation and interneuron migration. Rodent models demonstrate that altered marker levels during the prenatal period can cause lasting deficits in these systems, leading to cognitive deficits that resemble schizophrenia. This review assesses the potential role of prenatal cytokine and complement elevations on the etiology of schizophrenia. The current neurobiological understanding of the development of schizophrenia is reviewed to identify candidate cellular mechanisms that may be influenced by prenatal inflammation. We discuss the functions that cytokines and complement may play in prenatal neurodevelopment, review evidence that links exposure to these factors with risk for schizophrenia, and consider how these markers may interact with genetic vulnerabilities to influence the neurodevelopment of schizophrenia. We consider how prenatal inflammatory exposure may influence childhood and adolescent developmental risk trajectories for schizophrenia. Finally, we identify areas of further research needed to support the development of anti-inflammatory treatments to prevent the development of schizophrenia in at-risk neonates.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Avram Holmes and David Glahn for their comments on drafts of the manuscript. Dana Allswede's work was funded by National Science Foundation Graduate Research Fellowship DGE-1122492.

References

Abazyan, B., Nomura, J., Kannan, G., Ishizuka, K., Tamashiro, K. L., Nucifora, F., … Pletnikov, M. V. (2010). Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biological Psychiatry, 68, 11721181. doi:10.1016/j.biopsych.2010.09.022Google Scholar
Allswede, D. M., Buka, S. L., Yolken, R. H., Torrey, E. F., & Cannon, T. D. (2016). Elevated maternal cytokines at birth and risk for psychosis in adult offspring. Schizophrenia Research, 172, 4145. doi:10.1016/j.schres.2016.02.022Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
Anderson, G., Berk, M., Dodd, S., Bechter, K., Altamura, A. C., Dell'Osso, B., … Maes, M. (2013). Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 14. doi:10.1016/j.pnpbp.2012.10.008Google Scholar
Arion, D., Unger, T., Lewis, D. A., Levitt, P., & Mirnics, K. (2007). Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biological Psychiatry, 62, 711721. doi:10.1016/j.biopsych.2006.12.021Google Scholar
Aris, A., Lambert, F., Bessette, P., & Moutquin, J. M. (2008). Maternal circulating interferon-γ and interleukin-6 as biomarkers of Th1/Th2 immune status throughout pregnancy. Journal of Obstetrics and Gynaecology Research, 34, 711. doi:10.1111/j.1447-0756.2007.00676.xGoogle Scholar
Arnsten, A. F. T. (2011). Prefrontal cortical network connections: Key site of vulnerability in stress and schizophrenia. International Journal of Developmental Neuroscience, 29, 215223. doi:10.1016/j.ijdevneu.2011.02.006Google Scholar
Ashdown, H., Dumont, Y., Ng, M., Poole, S., Boksa, P., & Luheshi, G. N. (2006). The role of cytokines in mediating effects of prenatal infection on the fetus: Implications for schizophrenia. Molecular Psychiatry, 11, 4755. doi:10.1038/sj.mp.4001748Google Scholar
Barish, M. E., Mansdorf, N., & Raissdana, S. (1991). Gamma-interferon promotes differentiation of cultured cortical and hippocampal neurons. Developmental Biology, 144, 412423. doi:10.1016/0012-1606(91)90433-4Google Scholar
Bayer, T. A., Falkai, P., & Maier, W. (1999). Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “Two hit hypothesis.” Journal of Psychiatric Research, 33, 543548. doi:10.1016/S0022-3956(99)00039-4Google Scholar
Bearden, C. E., Rosso, I. M., Houister, J. M., Sanchez, L. E., Hadley, T., & Cannon, T. D. (2000). A prospective cohort study of childhood behavioral deviance and language abnormalities as predictors of adult schizophrenia. Schizophrenia Bulletin, 26, 395410. doi:10.1093/oxfordjournals.schbul.a033461Google Scholar
Bearden, C. E., Rosso, I. M., Sanchez, L. E., Hadley, T., Nuechterlein, K. H., & Cannon, T. D. (2003). A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. American Journal of Psychiatry, 160, 20602062.Google Scholar
Behrens, M. M., Ali, S. S., & Dugan, L. L. (2008). Interleukin-6 mediates the increase in NADPH-Oxidase in the ketamine model of schizophrenia. Journal of Neuroscience, 28, 1395713966. doi:10.1523/JNEUROSCI.4457-08.2008Google Scholar
Bénard, M., Raoult, E., Vaudry, D., Leprince, J., Falluel-Morel, A., Gonzalez, B. J., … Fontaine, M. (2008). Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum. Molecular Immunology, 45, 37673774. doi:10.1016/j.molimm.2008.05.027Google Scholar
Bennett, M. R. (2011). Schizophrenia: Susceptibility genes, dendritic-spine pathology and gray matter loss. Progress in Neurobiology, 95, 275300. doi:10.1016/j.pneurobio.2011.08.003Google Scholar
Bergink, V., Gibney, S. M., & Drexhage, H. A. (2014). Autoimmunity, inflammation, and psychosis: A search for peripheral markers. Biological Psychiatry, 75, 324331. doi:10.1016/j.biopsych.2013.09.037Google Scholar
Bilbo, S. D., Biedenkapp, J. C., Der-Avakian, A., Watkins, L. R., Rudy, J. W., & Maier, S. F. (2005). Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. Journal of Neuroscience, 25, 80008009. doi:10.1523/JNEUROSCI.1748-05.2005Google Scholar
Bilbo, S. D., & Schwarz, J. M. (2009). Early-life programming of later-life brain and behavior: A critical role for the immune system. Frontiers in Behavioral Neuroscience, 3, 114. doi:10.3389/neuro.08.014.2009Google Scholar
Bloomfield, P. S., Selvaraj, S., Veronese, M., Rizzo, G., Bertoldo, A., Owen, D. R., … Howes, O. D. (2016). Microglial activity in people at ultra high risk of psychosis and in schizophrenia: An [11C]PBR28 PET brain imaging study. American Journal of Psychiatry, 173, 4452. doi:10.1176/appi.ajp.2015.14101358Google Scholar
Boksa, P. (2010). Effects of prenatal infection on brain development and behavior: A review of findings from animal models. Brain, Behavior, and Immunity, 24, 881897. doi:10.1016/j.bbi.2010.03.005Google Scholar
Brandon, N. J., & Sawa, A. (2011). Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nature Reviews Neuroscience, 12, 707722. doi:10.1038/nrn3120Google Scholar
Brandt, V. C., Bergström, Z. M., Buda, M., Henson, R. N. A., & Simons, J. S. (2014). Did I turn off the gas? Reality monitoring of everyday actions. Cognitive, Affective & Behavioral Neuroscience, 14, 209219. doi:10.3758/s13415-013-0189-zGoogle Scholar
Broadbelt, K., Byne, W., & Jones, L. B. (2002). Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophrenia Research, 58, 7581. doi:10.1016/S0920-9964(02)00201-3Google Scholar
Brochu, M.-E., Girard, S., Lavoie, K., & Sébire, G. (2011). Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: An experimental study. Journal of Neuroinflammation, 8, 55. doi:10.1186/1742-2094-8-55Google Scholar
Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., … Susser, E. S. (2004). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry, 61, 774780. doi:10.1097/01.ogx.0000151642.60544.d2Google Scholar
Brown, A. S., Cohen, P., Harkavy-Friedman, J., Babulas, V., Malaspina, D., Gorman, J. M., & Susser, E. S. (2001). Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biological Psychiatry, 49, 473486. doi:10.1016/S0006-3223(01)01068-XGoogle Scholar
Brown, A. S., Hooton, J., Schaefer, C. A., Zhang, H., Petkova, E., Babulas, V., … Susser, E. S. (2004). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. American Journal of Psychiatry, 161, 889895. doi:10.1176/appi.ajp.161.5.889Google Scholar
Brown, A. S., Schaefer, C. A., Quesenberry, C. P., Liu, L., Babulas, V. P., & Susser, E. S. (2005). Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. American Journal of Psychiatry, 162, 767773. doi:10.1176/appi.ajp.162.4.767Google Scholar
Brown, A. S., & Susser, E. S. (2008). Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophrenia Bulletin, 34, 10541063. doi:10.1093/schbul/sbn096Google Scholar
Brown, A. S., Vinogradov, S., Kremen, W. S., Poole, J. H., Bao, Y., Kern, D., & McKeague, I. W. (2011). Association of maternal genital and reproductive infections with verbal memory and motor deficits in adult schizophrenia. Psychiatry Research, 188, 179186. doi:10.1016/j.psychres.2011.04.020Google Scholar
Brown, A. S., Vinogradov, S., Kremen, W. S., Poole, J. H., Deicken, R. F., Penner, J. D., … Schaefer, C. A. (2009). Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. American Journal of Psychiatry, 166, 683690. doi:10.1176/appi.ajp.2008.08010089Google Scholar
Buka, S. L., Cannon, T. D., Torrey, E. F., & Yolken, R. H. (2008). Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biological Psychiatry, 63, 809815. doi:10.1016/j.biopsych.2007.09.022Google Scholar
Buka, S. L., Tsuang, M. T., Torrey, E. F., Klebanoff, M. A., Bernstein, D., & Yolken, R. H. (2001). Maternal infections and subsequent psychosis among offspring. Archives of General Psychiatry, 58, 10321037. doi:10.1097/00006254-200204000-00005Google Scholar
Buka, S. L., Tsuang, M. T., Torrey, E. F., Klebanoff, M. A., Wagner, R. L., & Yolken, R. H. (2001). Maternal cytokine levels during pregnancy and adult psychosis. Brain, Behavior, and Immunity, 15, 411420. doi:10.1006/brbi.2001.0644Google Scholar
Cai, Z., Lin, S., Pang, Y., & Rhodes, P. G. (2004). Brain injury induced by intracerebral injection of interleukin-1beta and tumor necrosis factor-alpha in the neonatal rat. Pediatric Research, 56, 377384. doi:10.1203/01.PDR.0000134249.92944.14Google Scholar
Cai, Z., Pan, Z. L., Pang, Y., Evans, O. B., & Rhodes, P. G. (2000). Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatric Research, 47, 6472. doi:10.1203/00006450-200001000-00013Google Scholar
Cammer, W., & Zhang, H. (1999). Maturation of oligodendrocytes is more sensitive to TNFa than is survival of precursors and immature oligodendrocytes. Journal of Neuroimmunology, 97, 3742. doi:10.1016/S0165-5728(99)00045-4Google Scholar
Cannon, T., Bearden, C., Hollister, J., Rosso, I., Sanchez, L., & Hadley, T. (2000). Childhood cognitive functioning in schizophrenia patients and their unaffected siblings: A prospective cohort study. Schizophrenia Bulletin, 26, 379393. doi:10.1093/oxfordjournals.schbul.a033460Google Scholar
Cannon, T. D. (2015). How schizophrenia develops: Cognitive and brain mechanisms underlying onset of psychosis. Trends in Cognitive Sciences, 19, 744756. doi:10.1016/j.tics.2015.09.009Google Scholar
Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., van Erp, T. G. M., … Heinssen, R. (2015). Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77, 147157. doi:10.1016/j.biopsych.2014.05.023Google Scholar
Cannon, T. D., Rosso, I. M., Bearden, C. E., Sanchez, L. E., & Hadley, T. (1999). A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Development and Psychopathology, 11, 467485. doi:10.1017/S0954579499002163Google Scholar
Cannon, T. D., Theo, Q. M., Erp, V., Bearden, C. E., Loewy, R., Thompson, P., … Tsuang, M. T. (2003). Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophrenia Bulletin, 29, 653670. doi:10.1093/oxfordjournals.schbul.a007037Google Scholar
Cannon, T. D., van Erp, T. G. M., Rosso, I. M., Huttunen, M., Lönnqvist, J., Pirkola, T., … Standertskjöld-Nordenstam, C.-G. (2002). Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Archives of General Psychiatry, 59, 35. doi:10.1001/archpsyc.59.1.35Google Scholar
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9, 104110. doi:10.1016/j.tics.2005.01.011Google Scholar
Catts, V. S., Fung, S. J., Long, L. E., Joshi, D., Vercammen, A., Allen, K. M., … Shannon Weickert, C. (2013). Rethinking schizophrenia in the context of normal neurodevelopment. Frontiers in Cellular Neuroscience, 7, 60. doi:10.3389/fncel.2013.00060Google Scholar
Chu, Y., Jin, X., Parada, I., Pesic, A., Stevens, B., Barres, B., & Prince, D. A. (2010). Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proceedings of the National Academy of Sciences, 107, 79757980. doi:10.1073/pnas.0913449107Google Scholar
Chung, D. W., Fish, K. N., & Lewis, D. A. (2016). Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. American Journal of Psychiatry, 173, 11311139. doi:10.1176/appi.ajp.2016.16010025Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600. doi:10.1017/S0954579400007318Google Scholar
Clarke, M. C., Tanskanen, A., Huttunen, M., Whittaker, J. C., & Cannon, M. (2009). Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. American Journal of Psychiatry, 166, 10251030. doi:10.1176/appi.ajp.2009.08010031Google Scholar
Collard, C. D., , A., Morrissey, M. A., Agah, A., Rollins, S. A., Reenstra, W. R., … Stahl, G. L. (2000). Complement activation after oxidative stress: Role of the lectin complement pathway. American Journal of Pathology, 156, 15491556. doi:10.1016/S0002-9440(10)65026-2Google Scholar
Collins, H. L., & Bancroft, G. J. (1992). Cytokine enhancement of complement-dependent phagocytosis by macrophages: Synergy of tumor necorsis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. European Journal of Immunology, 22, 14471454. doi:10.1002/eji.1830220617Google Scholar
Cowell, R. M., Plane, J. M., & Silverstein, F. S. (2003). Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. Journal of Neuroscience, 23, 94599468.Google Scholar
Coyle, J. T., Tsai, G., & Goff, D. (2003). Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Annals of the New York Academy of Sciences, 1003, 318327. doi:10.1196/annals.1300.020Google Scholar
Creese, I., Burt, D., & Snyder, S. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192, 481483. doi:10.1126/science.3854Google Scholar
Cunningham, C., Campion, S., Teeling, J., Felton, L., & Perry, V. H. (2007). The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain, Behavior, and Immunity, 21, 490502. doi:10.1016/j.bbi.2006.12.007Google Scholar
Davis, K. L., Stewart, D. G., Friedman, J. I., & Buchsbaum, M. (2003). White matter changes in schizophrenia. Archives of General Psychiatry, 60, 443456. doi:10.1001/archpsyc.60.5.443Google Scholar
de Graaf-Peters, V. B., & Hadders-Algra, M. (2006). Ontogeny of the human central nervous system: What is happening when? Early Human Development, 82, 257266. doi:10.1016/j.earlhumdev.2005.10.013Google Scholar
Depino, A. M. (2013). Peripheral and central inflammation in autism spectrum disorders. Molecular and Cellular Neurosciences, 53, 6976. doi:10.1016/j.mcn.2012.10.003Google Scholar
Deverman, B. E., & Patterson, P. H. (2009). Cytokines and CNS development. Neuron, 64, 6178. doi:10.1016/j.neuron.2009.09.002Google Scholar
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Society for Research in Child Development, 71, 4456. doi:10.1111/1467-8624.00117Google Scholar
Doorduin, J., de Vries, E. F. J., Willemsen, A. T. M., de Groot, J. C., Dierckx, R. A., & Klein, H. C. (2009). Neuroinflammation in schizophrenia-related psychosis: A PET study. Journal of Nuclear Medicine, 50, 18011807. doi:10.2967/jnumed.109.066647Google Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 120. doi:10.1111/j.1467-7687.2005.00454.xGoogle Scholar
Dziegielewska, K. M., Moller, J. E., Potter, A. M., Ek, J., Lane, M. A., & Saunders, N. R. (2000). Acute-phase cytokines IL-1b and TNF-a in brain development. Cell and Tissue Research, 299, 335345. doi:10.1007/s004410050032Google Scholar
Ellman, L. M., Deicken, R. F., Vinogradov, S., Kremen, W. S., Poole, J. H., Kern, D. M., … Brown, A. S. (2010). Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophrenia Research, 121, 4654. doi:10.1016/j.schres.2010.05.014Google Scholar
Ellman, L. M., Yolken, R. H., Buka, S. L., Torrey, E. F., & Cannon, T. D. (2009). Cognitive functioning prior to the onset of psychosis: The role of fetal exposure to serologically determined influenza infection. Biological Psychiatry, 65, 10401047. doi:10.1016/j.biopsych.2008.12.015Google Scholar
Eroglu, C., & Barres, B. A. (2015). Regulation of synaptic connectivity by glia. Nature, 468, 223231. doi:10.1038/nature09612.RegulationGoogle Scholar
Favrais, G., van de Looij, Y., Fleiss, B., Ramanantsoa, N., Bonnin, P., Stoltenburg-Didinger, G., … Gressens, P. (2011). Systemic inflammation disrupts the developmental program of white matter. Annals of Neurology, 70, 550565. doi:10.1002/ana.22489Google Scholar
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319334. doi:10.1016/0022-3956(82)90038-3Google Scholar
Fioravanti, M., Carlone, O., Vitale, B., Cinti, M. E., & Clare, L. (2005). A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review, 15, 7395. doi:10.1007/s11065-005-6254-9Google Scholar
Francis, K., Lewis, B. M., Akatsu, H., Monk, P. N., Cain, S. A., Scanlon, M. F., … Gasque, P. (2003). Complement C3a receptors in the pituitary gland: A novel pathway by which an innate immune molecule releases hormones involved in the control of inflammation. Federation of American Societies for Experimental Biology Journal, 17, 22662268. doi:10.1096/fj.02-1103fjeGoogle Scholar
Fransson, P., Ulrika, A., Blennow, M., & Lagercrantz, H. (2011). The functional architecture of the infant brain as revealed by resting-state fMRI. Cerebral Cortex, 21, 145154. doi:10.1093/cercor/bhq071Google Scholar
Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176, 8394. doi:10.1016/j.schres.2016.07.014Google Scholar
Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3, 8997. doi:10.1007/s00117-004-1160-3Google Scholar
Gallagher, D., Norman, A. A., Woodard, C. L., Yang, G., Gauthier-Fisher, A., Fujitani, M., … Miller, F. D. (2013). Transient maternal IL-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell, 13, 564576. doi:10.1016/j.stem.2013.10.002Google Scholar
Garay, P. A., Hsiao, E. Y., Patterson, P. H., & McAllister, A. K. (2013). Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain, Behavior, and Immunity, 31, 5468. doi:10.1016/j.bbi.2012.07.008Google Scholar
Garey, L. J., Ong, W. Y., Patel, T. S., Kanani, M., Davis, A., Mortimer, A. M., … Hirsch, S. R. (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. Journal of Neurology and Neurosurgical Psychiatry, 65, 446453. doi:10.1136/jnnp.65.4.446Google Scholar
Gewurz, H., Shin, H. S., & Mergenhagen, S. E. (1968). Interactions of the complement system with endotoxic lipopolysaccharide: Consumption of each of the six terminal complement components. Journal of Experimental Medicine, 268, 10491057.Google Scholar
Gilmore, J. H., Fredrik Jarskog, L., Vadlamudi, S., & Lauder, J. M. (2004). Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology, 29, 12211229. doi:10.1038/sj.npp.1300446Google Scholar
Gilmore, J. H., Jarskog, L. F., & Vadlamudi, S. (2005). Maternal poly I:C exposure during pregnancy regulates TNFα, BDNF, and NGF expression in neonatal brain and the maternal–fetal unit of the rat. Journal of Neuroimmunology, 159, 106112. doi:10.1016/j.jneuroim.2004.10.008Google Scholar
Gilmore, J. H., Kang, C., Evans, D. D., Wolfe, H. M., Smith, J. K., Lieberman, J. A., … Gerig, G. (2010). Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia. American Journal of Psychiatry, 167, 10831091. doi:10.1176/appi.ajp.2010.09101492Google Scholar
Girard, S., Kadhim, H., Larouche, A., Roy, M., Gobeil, F., & Sébire, G. (2008). Pro-inflammatory disequilibrium of the IL-1β/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine, 43, 5462. doi:10.1016/j.cyto.2008.04.007Google Scholar
Girard, S., Larouche, A., Kadhim, H., Rola-Pleszczynski, M., Gobeil, F., & Sébire, G. (2008). Lipopolysaccharide and hypoxia/ischemia induced IL-2 expression by microglia in neonatal brain. Neuroreport, 19, 9971002. doi:10.1097/WNR.0b013e3283036e88Google Scholar
Girard, S., Sébire, H., Brochu, M. E., Briota, S., Sarret, P., & Sébire, G. (2012). Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain, Behavior, and Immunity, 26, 13311339. doi:10.1016/j.bbi.2012.09.001Google Scholar
Girard, S., Tremblay, L., Lepage, M., & Sébire, G. (2010). IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. Journal of Immunology, 184, 39974005. doi:10.4049/jimmunol.0903349Google Scholar
Girardi, G., Bulla, R., Salmon, J. E., & Tedesco, F. (2006). The complement system in the pathophysiology of pregnancy. Molecular Immunology, 43, 6877. doi:10.1016/j.molimm.2005.06.017Google Scholar
Glantz, L., & Lewis, D. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57, 6573. doi:10.1001/archpsyc.57.1.65Google Scholar
Glausier, J. R., & Lewis, D. A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience, 251, 90107. doi:10.1016/j.neuroscience.2012.04.044Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA, 10, 81748179. doi:10.1073/pnas.0402680101Google Scholar
Golan, H. M., Lev, V., Hallak, M., Sorokin, Y., & Huleihel, M. (2005). Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology, 48, 903917. doi:10.1016/j.neuropharm.2004.12.023Google Scholar
Goldstein, J. M., Cherkerzian, S., Seidman, L. J., Donatelli, J.-A. L., Remington, A. G., Tsuang, M. T., … Buka, S. L. (2014). Prenatal maternal immune disruption and sex-dependent risk for psychoses. Psychological Medicine, 44, 32493261. doi:10.1017/S0033291714000683Google Scholar
Hafizi, S., Tseng, H.-H., Rao, N., Selvanathan, T., Kenk, M., Bazinet, R. P., … Mizrahi, R. (2017). Imaging microglial activation in untreated first-episode psychosis: A PET study with [(18)F]FEPPA. American Journal of Psychiatry, 174, 118124. doi:10.1176/appi.ajp.2016.16020171Google Scholar
Harrison, P. J., & Eastwood, S. L. (2001). Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus, 11, 508519. doi:10.1002/hipo.1067Google Scholar
Hein, G., & Knight, R. T. (2008). Superior temporal sulcus—It's my area: Or is it? Journal of Cognitive Neuroscience, 20, 21252136. doi:10.1162/jocn.2008.20148Google Scholar
Herschkowitz, N. (2000). Neurological bases of behavioral development in infancy. Brain and Development, 22, 411416. doi:10.1016/S0387-7604(00)00185-6Google Scholar
Hodyl, N. A., Krivanek, K. M., Lawrence, E., Clifton, V. L., & Hodgson, D. M. (2007). Prenatal exposure to a pro-inflammatory stimulus causes delays in the development of the innate immune response to LPS in the offspring. Journal of Neuroimmunology, 190, 6171. doi:10.1016/j.jneuroim.2007.07.021Google Scholar
Holtan, S. G., Chen, Y., Kaimal, R., Creedon, D. J., Enninga, E. A. L., Nevala, W. K., & Markovic, S. N. (2015). Growth modeling of the maternal cytokine milieu throughout normal pregnancy: Macrophage-derived chemokine decreases as inflammation/counterregulation increases. Journal of Immunology Research, 952571. doi:10.1155/2015/952571Google Scholar
Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience, 27, 1149611500. doi:10.1523/JNEUROSCI.2213-07.2007Google Scholar
Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 20172036. doi:10.1016/j.neuropsychologia.2006.01.010Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178. doi:10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z3.0.CO;2-Z>Google Scholar
Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468, 187193. doi:10.1038/nature09552Google Scholar
Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 122. doi:10.3389/fimmu.2014.00514Google Scholar
Jacobsen, L. K., & Rapoport, J. L. (1998). Childhood-onset schizophrenia: Implications of clinical and neurobiological research. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 39, 101113. doi:10.1111/1469-7610.00305Google Scholar
Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2, 8195. doi:10.1162/jocn.1990.2.2.81Google Scholar
Kang, H. J., Kawasawa, T. I., Cheng, F., Zhu, Y., Xu, X., Li, M., … Sestan, N. (2011). Spatiotemporal trancriptome of the human brain. Nature, 478, 483489. doi:10.1038/nature10523.SpatiotemporalGoogle Scholar
Kenk, M., Selvanathan, T., Rao, N., Suridjan, I., Rusjan, P., Remington, G., … Mizrahi, R. (2015). Imaging neuroinflammation in gray and white matter in schizophrenia: An in-vivo PET study with [18 F]-FEPPA. Schizophrenia Bulletin, 41, 8593. doi:10.1093/schbul/sbu157Google Scholar
Keshavan, M. S., Giedd, J., Lau, J. Y. F., Lewis, D. A., & Paus, T. (2014). Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry, 1, 549558. doi:10.1016/S2215-0366(14)00081-9Google Scholar
Kim, I. H., Rossi, M. A., Aryal, D. K., Racz, B., Kim, N., Uezu, A., … Soderling, S. H. (2015). Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nature Neuroscience, 18, 883891. doi:10.1038/nn.4015Google Scholar
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 1217612182. doi:10.1523/JNEUROSCI.3479-08.2008Google Scholar
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., … Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Archives of General Psychiatry, 51, 199214. doi:10.1001/archpsyc.1994.03950030035004Google Scholar
Kubicki, M., Westin, C.-F., Nestor, P. G., Wible, C. G., Maier, S. E., Kikinis, R., … Shenton, M. E. (2003). Cingulate fasciculus integrity disruption in schizophrenia: A magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54, 11711180. doi:10.1016/S0006-3223(03)00419-0Google Scholar
Lasala, N., & Zhou, H. (2007). Effects of maternal exposure to LPS on the inflammatory response in the offspring. Journal of Neuroimmunology, 189, 95101. doi:10.1016/j.jneuroim.2007.07.010Google Scholar
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30, 718729. doi:10.1016/j.neubiorev.2006.06.001Google Scholar
Levin, H., Culhane, K., Hartmann, J., Evankovich, K., Mattson, A., Harward, H., … Fletcher, J. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Developmental Neuropsychology, 7, 377395. doi:10.1080/87565649109540499Google Scholar
Levitt, P. (2003). Structural and functional maturation of the developing primate brain. Journal of Pediatrics, 143, 3545. doi:10.1067/S0022-3476(03)00400-1Google Scholar
Lim, K., Hedehus, M., Moseley, M., de Crespigny, A., Sullivan, E., & Pfefferbaum, A. (1999). Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Archives of General Psychiatry, 56, 376–374. doi:10.1001/archpsyc.56.4.367Google Scholar
Lin, W., Zhu, Q., Gao, W., Chen, Y., Toh, C.-H., Styner, M., … Gilmore, J. H. (2008). Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. American Journal of Neuroradiology, 29, 18831889. doi:10.3174/ajnr.A1256Google Scholar
Lipina, T. V., Zai, C., Hlousek, D., Roder, J. C., & Wong, A. H. C. (2013). Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. Journal of Neuroscience, 33, 76547666. doi:10.1523/JNEUROSCI.0091-13.2013Google Scholar
Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., & Casey, B. J. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16, 553560. doi:10.1093/cercor/bhj003Google Scholar
Lodge, D. J., & Grace, A. A. (2007). Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. Journal of Neuroscience, 27, 1142411430. doi:10.1523/JNEUROSCI.2847-07.2007Google Scholar
Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. T. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 94779487. doi:10.1523/JNEUROSCI.0333-10.2010Google Scholar
Ma, L., Li, X.-W., Zhang, S.-J., Yang, F., Zhu, G.-M., Yuan, X.-B., & Jiang, W. (2014). Interleukin-1 beta guides the migration of cortical neurons. Journal of Neuroinflammation, 11, 114. doi:10.1186/1742-2094-11-114Google Scholar
Mallard, C., & Hagberg, H. (2007). Inflammation-induced preconditioning in the immature brain. Seminars in Fetal and Neonatal Medicine, 12, 280286. doi:10.1016/j.siny.2007.01.014Google Scholar
Mayilyan, K. R., Weinberger, D. R., & Sim, R. B. (2008). The complement system in schizophrenia. Drug News Perspective, 21, 200210. doi:10.1016/j.surg.2006.10.010.UseGoogle Scholar
Mednick, S. A., Machon, R. A., Huttunen, M. O., & Bonett, D. (1988). Schizophrenia following prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 45, 189192. doi:10.1001/archpsyc.1988.01800260109013Google Scholar
Meyer, U. (2013). Developmental neuroinflammation and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 2034. doi:10.1016/j.pnpbp.2011.11.003Google Scholar
Meyer, U., Feldon, J., & Yee, B. K. (2009). A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophrenia Bulletin, 35, 959972. doi:10.1093/schbul/sbn022Google Scholar
Meyer, U., Murray, P. J., Urwyler, A., Yee, B. K., Schedlowski, M., & Feldon, J. (2008). Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Molecular Psychiatry, 13, 208221. doi:10.1038/sj.mp.4002042Google Scholar
Meyer, U., Yee, B. K., & Feldon, J. (2007). The neurodevelopmental impact of prenatal infections at different times of pregnancy: The earlier the worse? Neuroscientist, 13, 241256. doi:10.1177/1073858406296401Google Scholar
Miller, B. J., Culpepper, N., Rapaport, M. H., & Buckley, P. (2013). Prenatal inflammation and neurodevelopment in schizophrenia: A review of human studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 92100. doi:10.1016/j.pnpbp.2012.03.010Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. doi:10.1146/annurev.neuro.24.1.167Google Scholar
Mittal, V. A., Ellman, L. M., & Cannon, T. D. (2008). Gene-environment interaction and covariation in schizophrenia: The role of obstetric complications. Schizophrenia Bulletin, 34, 10831094. doi:10.1093/schbul/sbn080Google Scholar
Monji, A., Kato, T., & Kanba, S. (2009). Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry and Clinical Neurosciences, 63, 257265. doi:10.1111/j.1440-1819.2009.01945.xGoogle Scholar
Monji, A., Kato, T. A., Mizoguchi, Y., Horikawa, H., Seki, Y., Kasai, M., … Kanba, S. (2013). Neuroinflammation in schizophrenia especially focused on the role of microglia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 115121. doi:10.1016/j.pnpbp.2011.12.002Google Scholar
Moriyama, M., Fukuhara, T., Britschgi, M., He, Y., Villeda, S., Molina, H., … Holers, M. (2011). Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. Journal of Neuroscience, 31, 39813989. doi:10.1523/JNEUROSCI.3617-10.2011.ComplementGoogle Scholar
Mortensen, P. B., Nørgaard-Pedersen, B., Waltoft, B. L., Sørensen, T. L., Hougaard, D., Torrey, E. F., & Yolken, R. H. (2007). Toxoplasma gondii as a risk factor for early-onset schizophrenia: Analysis of filter paper blood samples obtained at birth. Biological Psychiatry, 61, 688693. doi:10.1016/j.biopsych.2006.05.024Google Scholar
Mousa, A., Seiger, A., Kjaeldgaard, A., & Bakhiet, M. (1999). Human first trimester forebrain cells express genes for inflammatory and anti-inflammatory cytokines. Cytokine, 11, 5560. doi:10.1006/cyto.1998.0381Google Scholar
Mrzljak, L., Uylings, H. B. M., van Eden, C. G., & Judas, M. (1990). Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Progress in Brain Research, 85, 185222. doi:10.1016/S0079-6123(08)62681-3Google Scholar
Nielsen, P. R., Agerbo, E., Skogstrand, K., Hougaard, D. M., Meyer, U., & Mortensen, P. B. (2014). Neonatal levels of inflammatory markers and later risk of schizophrenia. Biological Psychiatry, 77, 548555. doi:10.1016/j.biopsych.2014.07.013Google Scholar
Nigg, J. T., & Casey, B. (2005). An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Development and Psychopathology, 17, 785806. doi:10.1017/S0954579405050376Google Scholar
Ohi, K., Shimada, T., Nitta, Y., Kihara, H., Okubo, H., Uehara, T., & Kawasaki, Y. (2016). Specific gene expression patterns of 108 schizophrenia-associated loci in cortex. Schizophrenia Research, 174, 3538. doi:10.1016/j.schres.2016.03.032Google Scholar
Olney, J. W., Newcomer, J. W., & Farber, N. B. (1999). NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research, 33, 523533. doi:10.1016/S0022-3956(99)00029-1Google Scholar
Orsini, F., de Blasio, D., Zangari, R., Zanier, E. R., & de Simoni, M.-G. (2014). Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Frontiers in Cellular Neuroscience, 8, 380. doi:10.3389/fncel.2014.00380Google Scholar
Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., … Gross, C. T. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 333, 14561458. doi:10.1126/science.1202529Google Scholar
Patterson, P. H. (2009). Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behavioural Brain Research, 204, 313321. doi:10.1016/j.bbr.2008.12.016Google Scholar
Ponomarev, E. D., Veremeyko, T., & Weiner, H. L. (2013). MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 61, 91103. doi:10.1002/glia.22363Google Scholar
Rajji, T. K., Ismail, Z., & Mulsant, B. H. (2009). Age at onset and cognition in schizophrenia: Meta-analysis. British Journal of Psychiatry, 195, 286293. doi:10.1192/bjp.bp.108.060723Google Scholar
Ratnayake, U., Quinn, T., Walker, D. W., & Dickinson, H. (2013). Cytokines and the neurodevelopmental basis of mental illness. Frontiers in Neuroscience, 7, 19. doi:10.3389/fnins.2013.00180Google Scholar
Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., … Markram, H. (2017). Cliques of neurons bound into cavities provide a missing link between structure and function. Frontiers in Computational Neuroscience, 11, 116. doi:10.3389/fncom.2017.00048Google Scholar
Richani, K., Soto, E., Romero, R., Espinoza, J., Chaiworapongsa, T., Nien, J. K., … Mazor, M. (2005). Normal pregnancy is characterized by systemic activation of the complement system. Journal of Maternal-Fetal & Neonatal Medicine, 17, 239245. doi:10.1080/14767050500072722Google Scholar
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K.-H., Holmans, P. A., … O'Donovan, M. C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427. doi:10.1038/nature13595Google Scholar
Rodts-Palenik, S., Wyatt-Ashmead, J., Pang, Y., Thigpen, B., Cai, Z., Rhodes, P., … Bennett, W. A. (2004). Maternal infection-induced white matter injury is reduced by treatment with interleukin-10. American Journal of Obstetrics and Gynecology, 191, 13871392. doi:10.1016/j.ajog.2004.06.093Google Scholar
Roiser, J. P., Howes, O. D., Chaddock, C. A., Joyce, E. M., & McGuire, P. (2013). Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophrenia Bulletin, 39, 13281336. doi:10.1093/schbul/sbs147Google Scholar
Ross, K. M. K., Miller, G., Culhane, J., Grobman, W., Simhan, H. N., Wadhwa, P. D., … Borders, A. (2016). Patterns of peripheral cytokine expression during pregnancy in two cohorts and associations with inflammatory markers in cord blood. American Journal of Reproductive Immunology, 76, 406414. doi:10.1111/aji.12563Google Scholar
Sahu, A., Isaacs, S. N., Soulika, A. M., & Lambris, J. D. (1998). Interaction of vaccinia virus complement control protein with human complement proteins: Factor I-mediated degradation of C3b to iC3b1 inactivates the alternative complement pathway. Journal of Immunology, 160, 55965604. doi:0022-1767Google Scholar
Saito, S., Nakashima, A., Shima, T., & Ito, M. (2010). Th1/Th2/Th17 and regulatory T-Cell paradigm in pregnancy. American Journal of Reproductive Immunology, 63, 601610. doi:10.1111/j.1600-0897.2010.00852.xGoogle Scholar
Sanfilipo, M., Lafargue, T., Rusinek, H., Arena, L., Loneragan, C., Lautin, A., … Wolkin, A. (2000). Volumetric measure of the frontal and temporal lobe regions in schizophrenia. Archives of General Psychiatry, 57, 471480. doi:10.1001/archpsyc.57.5.471Google Scholar
Sanfilipo, M., Lafargue, T., Rusinek, H., Arena, L., Loneragan, C., Lautin, A., … Wolkin, A. (2002). Cognitive performance in schizophrenia: Relationship to regional brain volumes and psychiatric symptoms. Psychiatry Research—Neuroimaging, 116, 123. doi:10.1016/S0925-4927(02)00046-XGoogle Scholar
Satterthwaite, T. D., Wolf, D. H., Calkins, M. E., Vandekar, S. N., Erus, G., Ruparel, K., … Gur, R. E. (2016). Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA Psychiatry, 73, 515524. doi:10.1001/jamapsychiatry.2015.3463Google Scholar
Saykin, A., Shtasel, D., Gur, R., Kester, D., Mozley, L., Stafiniak, P., & Gur, R. (1994). Neurological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry, 51, 124131. doi:10.1001/archpsyc.1994.03950020048005Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 127.Google Scholar
Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., … McCarroll, S. A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530, 177183. doi:10.1038/nature16549Google Scholar
Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106–107, 116. doi:10.1016/j.pneurobio.2013.04.001Google Scholar
Severance, E. G., Alaedini, A., Yang, S., Halling, M., Gressitt, K. L., Stallings, C. R., … Yolken, R. H. (2012). Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophrenia Research, 138, 4853. doi:10.1038/nature13314.AGoogle Scholar
Severance, E. G., Gressitt, K. L., Buka, S. L., Cannon, T. D., & Yolken, R. H. (2014). Maternal complement C1q and increased odds for psychosis in adult offspring. Schizophrenia Research, 159, 1419. doi:10.1016/j.schres.2014.07.053Google Scholar
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London, 298, 199209. doi:10.1098/rstb.1982.0082Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49, 152. doi:10.1016/S0920-9964(01)00163-3Google Scholar
Shi, F., Yap, P. T., Gao, W., Lin, W., Gilmore, J. H., & Shen, D. (2012). Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. NeuroImage, 62, 16221633. doi:10.1016/j.neuroimage.2012.05.026Google Scholar
Shi, L., Fatemi, S. H., Sidwell, R. W., & Patterson, P. H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297302.Google Scholar
Shinjyo, N., Ståhlberg, A., Dragunow, M., Pekny, M., & Pekna, M. (2009). Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells, 27, 28242832. doi:10.1002/stem.225Google Scholar
Short, S. J., Lubach, G. R., Karasin, A. I., Olsen, C. W., Styner, M., Knickmeyer, R. C., … Coe, C. L. (2010). Maternal influenza infection during pregnancy impacts postnatal brain development in the Rhesus monkey. Biological Psychiatry, 67, 965973. doi:10.1016/j.biopsych.2009.11.026Google Scholar
Smith, S. E. P., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. Journal of Neuroscience, 27, 1069510702. doi:10.1523/JNEUROSCI.2178-07.2007Google Scholar
Somerville, L. H., Hare, T., & Casey, B. J. (2011). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience, 23, 21232134. doi:10.1162/jocn.2010.21572Google Scholar
Squire, L. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195231. doi:10.1037/0033-295X.99.3.582Google Scholar
St. Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., … Evans, H. J. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336, 1316. doi:10.1016/0140-6736(90)91520-KGoogle Scholar
Stephan, A. H., Barres, B. A., & Stevens, B. (2012). The complement system: An unexpected role in synaptic pruning during development and disease. Annual Review of Neuroscience, 35, 369389. doi:10.1146/annurev-neuro-061010-113810Google Scholar
Stephan, A. H., Madison, D. V, Mateos, J. M., Fraser, D. A., Lovelett, E. A., Coutellier, L., … Barres, B. A. (2013). A dramatic increase of C1q protein in the CNS during normal aging. Journal of Neuroscience, 33, 1346013474. doi:10.1523/JNEUROSCI.1333-13.2013Google Scholar
Stridh, L., Mottahedin, A., Johansson, M. E., Valdez, R. C., Northington, F., Wang, X., & Mallard, C. (2013). Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. Journal of Neuroscience, 33, 1204112051. doi:10.1523/JNEUROSCI.0673-13.2013Google Scholar
Sugimori, E., Mitchell, K. J., Raye, C. L., Greene, E. J., & Johnson, M. K. (2014). Brain mechanisms underlying reality monitoring for heard and imagined words. Psychological Science, 25, 403413. doi:10.1177/0956797613505776Google Scholar
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35, 147168. doi:10.1038/npp.2009.115Google Scholar
Theoharides, T. C., Weinkauf, C., & Conti, P. (2004). Brain cytokines and neuropsychiatric disorders. Journal of Clinical Psychopharmacology, 24, 577581. doi:10.1097/01.jcp/0000148206.86483.4fGoogle Scholar
Tong, L., Balazs, R., Soiampornkul, R., Thangnipon, W., & Cotman, C. W. (2008). Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiology of Aging, 29, 13801393. doi:10.1016/j.neurobiolaging.2007.02.027Google Scholar
Urakubo, A., Jarskog, L. F., Lieberman, J. A., & Gilmore, J. H. (2001). Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophrenia Research, 47, 2736. doi:10.1016/S0920-9964(00)00032-3Google Scholar
van Berckel, B. N., Bossong, M. G., Boellaard, R., Kloet, R., Schuitemaker, A., Caspers, E., … Kahn, R. S. (2008). Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study. Biological Psychiatry, 64, 820822. doi:10.1016/j.biopsych.2008.04.025Google Scholar
van den Heuvel, M. P., Scholtens, L. H., de Reus, M. A., & Kahn, R. S. (2016). Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biological Psychiatry, 80, 293301. doi:10.1016/j.biopsych.2015.10.005Google Scholar
van Os, J., & Selten, J.-P. (1998). Prenatal exposure to maternal stress and subsequent schizophrenia: The May 1940 invasion of the Netherlands. British Journal of Psychiatry, 172, 324326.Google Scholar
Verdurand, M., Dalton, V. S., Nguyen, V., Grégoire, M. C., Zahra, D., Wyatt, N., … Zavitsanou, K. (2014). Prenatal poly I:C age-dependently alters cannabinoid type 1 receptors in offspring: A longitudinal small animal PET study using [18F]MK-9470. Experimental Neurology, 257, 162169. doi:10.1016/j.expneurol.2014.05.004Google Scholar
Vuillermot, S., Joodmardi, E., Perlmann, T., Ove Ogren, S., Feldon, J., & Meyer, U. (2012). Prenatal immune activation Interacts with genetic Nurr1 deficiency in the development of attentional impairments. Journal of Neuroscience, 32, 436451. doi:10.1523/JNEUROSCI.4831-11.2012Google Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669. doi:10.1001/archpsyc.1988.01800350089019Google Scholar
Weir, R. K., Forghany, R., Smith, S. E. P., Patterson, P. H., McAllister, A. K., Schumann, C. M., & Bauman, M. D. (2015). Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation. Brain, Behavior, and Immunity, 48, 139146. doi:10.1016/j.bbi.2015.03.009Google Scholar
Witthaus, H., Brüne, M., Kaufmann, C., Bohner, G., Özgürdal, S., Gudlowski, Y., … Juckel, G. (2008). White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients. Schizophrenia Research, 102, 141149. doi:10.1016/j.schres.2008.03.022Google Scholar
Wu, W., Adams, C. E., Stevens, K. E., Chow, K., & Patterson, P. H. (2015). The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain, Behavior, and Immunity, 46, 192202. doi:10.1016/j.bbi.2015.02.005Google Scholar
Yamamoto, H., Fara, A. F., Dasgupta, P., & Kemper, C. (2013). CD46: The “multitasker” of complement proteins. International Journal of Biochemistry and Cell Biology, 45, 28082820. doi:10.1016/j.biocel.2013.09.016Google Scholar