Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T16:23:45.964Z Has data issue: false hasContentIssue false

Statistically evaluating person-oriented principles revisited

Published online by Cambridge University Press:  28 April 2010

Sonya K. Sterba*
Affiliation:
The University of North Carolina at Chapel Hill
Daniel J. Bauer
Affiliation:
The University of North Carolina at Chapel Hill
*
Address correspondence and reprint requests to: Sonya K. Sterba, L. L. Thurstone Psychometric Laboratory, Department of Psychology, The University of North Carolina at Chapel Hill, Campus Box 3270, Chapel Hill, NC 27599-3270; E-mail: ssterba@email.unc.edu.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Special Section Authors' Response
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 11731182.CrossRefGoogle ScholarPubMed
Bauer, D. J. (2007). Observations on the use of growth mixture models in psychological research. Multivariate Behavioral Research, 24, 757786.CrossRefGoogle Scholar
Bauer, D. J., & Curran, P. J. (2003a). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338363.CrossRefGoogle ScholarPubMed
Bauer, D. J., & Curran, P. J. (2003b). Over-extracting latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthén (2003), and Cudeck and Henly (2003). Psychological Methods, 8, 384393.CrossRefGoogle Scholar
Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11, 142163.CrossRefGoogle ScholarPubMed
Bogat, G. A. (2009). Is it necessary to discuss person-oriented research in community psychology? American Journal of Community Psychology, 43, 2234.CrossRefGoogle Scholar
Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models. In Maydeu-Olivares, A. & McArdle, J. (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 415452). Mahwah, NJ: Erlbaum.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.Google Scholar
Cortina, J. M., & Dunlap, W. P. (1997). On the logic and purpose of significance testing. Psychological Methods, 2, 161172.CrossRefGoogle Scholar
Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 122.CrossRefGoogle ScholarPubMed
Ferguson, T. S. (1983). Bayesian density estimation via mixtures of normal distributions. In Rizvi, M. H., Rustagi, J. S., & Siegmund, D. (Eds.), Recent advances in statistics (pp. 287302). New York: Academic Press.CrossRefGoogle Scholar
Ialongo, N. (2010). Steps substantive researchers can take to build a scientifically strong case for the existence of trajectory groups. Development and Psychophathology, 22, 273275.CrossRefGoogle ScholarPubMed
James, L. R., & Brett, J. M. (1984). Mediators, moderators, and tests for mediation. Journal of Applied Psychology, 69, 307321.CrossRefGoogle Scholar
Kreuter, F., & Muthén, B. (2008). Analyzing criminal trajectory profiles: Bridging multilevel and group-based approaches using growth mixture modeling. Journal of Quantitative Criminology, 24, 131.CrossRefGoogle Scholar
Leroux, B. G. (1992). Consistent estimation of a mixing distribution. Annals of Statistics, 20, 13501360.CrossRefGoogle Scholar
Lubke, G., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14, 2647.CrossRefGoogle Scholar
MacCallum, R. C., Wegener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114, 185199.CrossRefGoogle ScholarPubMed
MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 1940.CrossRefGoogle ScholarPubMed
MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York: Erlbaum.Google Scholar
Mlodinow, L. (2008). The Drunkard's Walk: How randomness rules our lives (pp. 169191). New York: Random House.Google Scholar
Molenaar, P. C. M. (2010). Testing all six person-oriented principles in dynamic factor analysis. Development and Psychopathology, 22, 255259.CrossRefGoogle ScholarPubMed
Molenaar, P. C. M., Sinclair, K. O., Rovine, M. J., Ram, N., & Corneal, S. E. (2009). Analyzing developmental processes on an individual level using nonstationary time series modeling. Developmental Psychology, 45, 260271.CrossRefGoogle Scholar
Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. Journal of Personality and Social Psychology, 89, 852863.CrossRefGoogle ScholarPubMed
Mun, E. Y., Bates, M. A., & Vaschillo, E. (2010). Closing the gap between person-oriented theory and methods. Development and Psychopathology, 22, 261271.CrossRefGoogle Scholar
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte-Carlo simulation study. Structural Equation Modeling, 14, 535569.CrossRefGoogle Scholar
Popper, K. (1972). Objective knowledge: An evolutionary approach. Oxford: Clarendon Press.Google Scholar
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185227.Google ScholarPubMed
Tofighi, D., & Enders, C. K. (2007). Identifying the correct number of classes in growth mixture models. In Hancock, G. R. & Samuelsen, K. M. (Eds.), Advances in latent variable mixture models (pp. 317341). Greenwich, CT: Information Age.Google Scholar
Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison–Wesley.Google Scholar
von Eye, A. (2010). Developing the person-oriented approach: Theory and methods of analysis. Development and Psychopathology, 22, 277285.CrossRefGoogle ScholarPubMed
von Eye, A. & Bergman, L. R. (2003). Research strategies in developmental psychopathology: Dimensional identity and the person-oriented approach. Development and Psychopathology, 15, 553580.CrossRefGoogle ScholarPubMed
von Eye, A. (1990). Introduction to Configural Frequency Analysis: The search for types and antitypes in cross-classification. New York: Cambridge University Press.Google Scholar
von Eye, A. (2002). Configural frequency analysis—Methods, models, and applications. Mahwah, NJ: Erlbaum.Google Scholar
Wainer, H. (1999). One cheer for null hypothesis significance testing. Psychological Methods, 4, 212213.CrossRefGoogle Scholar