Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:40:12.023Z Has data issue: false hasContentIssue false

Testing a developmental cascade model of adolescent substance use trajectories and young adult adjustment

Published online by Cambridge University Press:  01 October 2010

Sarah D. Lynne-Landsman*
Affiliation:
Johns Hopkins Bloomberg School of Public Health
Catherine P. Bradshaw
Affiliation:
Johns Hopkins Bloomberg School of Public Health
Nicholas S. Ialongo
Affiliation:
Johns Hopkins Bloomberg School of Public Health
*
Address correspondence and reprint requests to: Sarah D. Lynne-Landsman, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway, Hampton House, Room 802, Baltimore, MD 21205; E-mail: slynne@jhsph.edu.

Abstract

Developmental models highlight the impact of early risk factors on both the onset and growth of substance use, yet few studies have systematically examined the indirect effects of risk factors across several domains, and at multiple developmental time points, on trajectories of substance use and adult adjustment outcomes (e.g., educational attainment, mental health problems, criminal behavior). The current study used data from a community epidemiologically defined sample of 678 urban, primarily African American youth, followed from first grade through young adulthood (age 21) to test a developmental cascade model of substance use and young adult adjustment outcomes. Drawing upon transactional developmental theories and using growth mixture modeling procedures, we found evidence for a developmental progression from behavioral risk to adjustment problems in the peer context, culminating in a high-risk trajectory of alcohol, cigarette, and marijuana use during adolescence. Substance use trajectory membership was associated with adjustment in adulthood. These findings highlight the developmental significance of early individual and interpersonal risk factors on subsequent risk for substance use and, in turn, young adult adjustment outcomes.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J. A. (2005). Substance abuse in girls. In Bell, D. J., Foster, S. L., & Mash, E. J. (Eds.), Handbook of behavioral and emotional problems in girls (pp. 181209). New York: Kluwer Academic/Plenum Press.CrossRefGoogle Scholar
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In Marcoulides, G. A. & Schumacker, R. E. (Eds.), Advanced structural equation modeling: Issues and techniques. Mahwah, NJ: Erlbaum.Google Scholar
Archer, J. (2004). Sex differences in aggression in real-world settings: A meta-analytic review. Review of General Psychology, 8, 291322.CrossRefGoogle Scholar
Beyers, J. M., Bates, J. E., Pettit, G. S., & Dodge, K. A. (2003). Neighborhood structure, parenting processes, and the development of youths' externalizing behaviors: A multilevel analysis. American Journal of Community Psychology, 31, 3553.CrossRefGoogle ScholarPubMed
Bradshaw, C. P., Schaeffer, C. M., Petras, H., & Ialongo, N. (in press). Predicting negative life outcomes from early aggressive–disruptive behavior trajectories: Gender differences in maladaptation across life domains. Journal of Youth and Adolescence.Google Scholar
Bradshaw, C. P., Zmuda, J. H., Kellam, S. G., & Ialongo, N. S. (2009). Longitudinal impact of two universal preventive interventions in first grade on educational outcomes in high school. Journal of Educational Psychology, 101, 926937.CrossRefGoogle ScholarPubMed
Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University of Press.CrossRefGoogle Scholar
Brook, J. S., Nomura, C., & Cohen, P. (1989). A network of influence on adolescent drug involvement: Neighborhood, school, peer, and family. Genetic, Social, and General Psychology Monographs, 115, 125145.Google ScholarPubMed
Burt, K. B., Obradović, J., Long, J. D., & Masten, A. S. (2008). The interplay of social competence and psychopathology over 20 years: Testing transactional and cascade models. Child Development, 79, 359374.CrossRefGoogle ScholarPubMed
Capaldi, D. M., Crosby, L., & Stoolmiller, M. (1996). Predicting the timing of first sexual intercourse for at-risk adolescent males. Child Development, 67, 344359.CrossRefGoogle ScholarPubMed
Capaldi, D. M., & Patterson, G. R. (1989). Psychometric properties of fourteen latent constructs from the Oregon Youth Study. New York: Springer–Verlag.CrossRefGoogle Scholar
Centers for Disease Control and Prevention. (2008). Youth risk behavior surveillance—United States, 2007. Morbidity and Mortality Weekly Report, 57, 1131.Google Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., pp. 123). New York: Wiley.Google ScholarPubMed
Dishion, T. J., Capaldi, D., Spracklen, K. M., & Li, F. (1995). Peer ecology of male adolescent drug use. Development and Psychopathology, 7, 803824.CrossRefGoogle Scholar
Dodge, K. A., Coie, J. D., & Lynam, D. (2006). Aggression and antisocial behavior in youth. In Eisenberg, N., Damon, W., & Lerner, R. M. (Eds.), Handbook of child psychology: Social, emotional, and personality development (6th ed., pp. 719788). Hoboken, NJ: Wiley.Google Scholar
Dodge, K. A., Greenberg, M. T., Malone, P. S., & The Conduct Problems Prevention Research Group. (2008). Testing an idealized dynamic cascade model of the development of serious violence in adolescence. Child Development, 79, 19071927.CrossRefGoogle ScholarPubMed
Dodge, K. A., Lansford, J. E., Burks, V. S., Bates, J. E., Pettit, G. S., Fontaine, R., et al. (2003). Peer rejection and social information-processing factors in the development of aggressive behavior problems in children. Child Development, 74, 374393.CrossRefGoogle ScholarPubMed
Dodge, K. A., Malone, P. S., Lansford, J. E., Miller, S., Pettit, G. S., & Bates, J. E. (2009). A dynamic cascade model of the development of substance-use onset. Monographs of the Society for Research in Child Development, 74, vii119.Google ScholarPubMed
Dodge, K. A., & Pettit, G. S. (2003). A biopsychosocial model of the development of chronic conduct problems in adolescence. Developmental Psychology, 39, 349371.CrossRefGoogle ScholarPubMed
Elder, G. (1994). Time, human agency, and social change: Perspectives on the life course. Social Psychological Quarterly, 57, 415.Google Scholar
Hirschi, T. (1969). Causes of delinquency. Berkeley, CA: University of California Press.Google Scholar
Ialongo, N., Poduska, J., Werthamer, L., & Kellam, S. (2001). The distal impact of two first-grade preventive interventions on conduct problems and disorder in early adolescence. Journal of Emotional and Behavioral Disorders, 9, 146161.CrossRefGoogle Scholar
Ialongo, N. S., Rogosch, F. A., Cicchetti, D., Toth, S., Buckley, J. A., Petras, H., et al. (2006). A developmental psychopathology approach to the prevention of mental health disorders. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., pp. 9681018). New York: Wiley.Google Scholar
Ialongo, N. S., Werthamer, L., Kellam, S. G., Brown, C. H., Wang, S., & Lin, Y. (1999). Proximal impact of two first-grade preventive interventions on the early risk behaviors for later substance abuse, depression, and antisocial behavior. American Journal of Community Psychology, 27, 599641.CrossRefGoogle ScholarPubMed
Jessor, R. (1978). Psychosocial factors in the patterning of drinking behavior. In Fishman, J. (Ed.), The bases of addiction (pp. 6780). Berlin: Dahlem Konferenzen.Google Scholar
Johnston, L. D., O'Malley, P., & Bachman, J. G. (1995). National survey results on drug use from the Monitoring the Future study, 1975–1994: Vol. 1. Secondary school students (Technical Report No. 95-4026). Washington, DC: NIH.Google Scholar
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2006). Monitoring the Future national results on adolescent drug use: Overview of key findings, 2005 (NIH Report No. 06-5882). Bethesda, MD: National Institute on Drug Abuse.Google Scholar
Kaufman, A., & Kaufman, N. (1998). Manual for the Kaufman Test of Educational Achievement: Brief form. Circle Pines, MN: American Guidance Services.Google Scholar
Kellam, S. G., & Rebok, G. W. (1992). Building developmental and etiological theory through epidemiologically based preventive intervention trials. In McCord, J. & Tremblay, R. E. (Eds.), Preventing antisocial behavior: Interventions from birth through adolescence (pp. 162195). New York: Guilford Press.Google Scholar
Little, R. J. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 11121121.CrossRefGoogle Scholar
MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum.Google Scholar
Masten, A. S., Long, J. D., Roisman, G. I., Burt, K. B., Obradović, J., Roberts, J. M., et al. (2005). Developmental cascades: Linking academic achievement, externalizing and internalizing symptoms over 20 years. Developmental Psychology, 41, 733746.CrossRefGoogle ScholarPubMed
Mayes, L. C., & Suchman, N. E. (2006). Developmental pathways to substance abuse. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 3. Risk, disorder, and adaptation (2nd ed., pp. 599619). Hoboken, NJ: Wiley.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (2006). Life-course-persistent versus adolescence-limited antisocial behavior. In Cicchetti, D. & Cohen, D. J. (Ed.), Developmental psychopathology: Vol. 3. Risk, disorder, and adaptation (2nd ed., pp. 570598). Hoboken, NJ: Wiley.Google Scholar
Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In Kaplan, D. (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345368). Newbury Park, CA: Sage.Google Scholar
Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 6, 463469.CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (1998–2008). Mplus user's guide (4th ed.). Los Angeles: Author.Google Scholar
Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric group-based approach. Psychological Methods, 4, 139157.CrossRefGoogle Scholar
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535569.CrossRefGoogle Scholar
Patterson, G. R. (1982). A social learning approach: Vol. 3. Coercive family process. Eugene, OR: Castalia.Google Scholar
Patterson, G. R. (1986). Performance models for antisocial boys. American Psychologist, 41, 432444.CrossRefGoogle ScholarPubMed
Patterson, G. R., DeBaryshe, B. D., & Ramsey, E. (1989). A developmental perspective on antisocial behavior. American Psychologist, 44, 329335.CrossRefGoogle ScholarPubMed
Patterson, G. R., Reid, J., & Dishion, T. (1992). A social learning approach: Vol. 4. Antisocial boys. Eugene, OR: Castalia.Google Scholar
Petras, H., Schaeffer, C., Ialongo, S., Muthén, B., Lambert, S., Poduska, J., et al. (2004). When the course of aggressive behavior in childhood does not predict antisocial outcomes in adolescence and adulthood: An examination of potential explanatory variables. Development and Psychopathology, 16, 919941.CrossRefGoogle Scholar
Robins, L. N., Cottler, L. B., Bucholz, K. K., Compton, W. M., North, C. S., & Rourke, K. M. (2000). Diagnostic Interview Schedule for the DSM-IV (DIS-IV). St. Louis, MO: Washington University.Google Scholar
Rutter, M. (1989). Pathways from childhood to adult life. Journal of Psychology and Psychiatry, 30, 2351.CrossRefGoogle ScholarPubMed
Schaeffer, C., Petras, H., Ialongo, N., Poduska, J., & Kellam, S. (2003). Modeling growth in boys aggressive behavior across elementary school: Links to later criminal involvement, conduct disorder, and antisocial personality disorder. Developmental Psychology, 39, 10201035.CrossRefGoogle ScholarPubMed
Schaeffer, C. M., Petras, H., Ialongo, N., Masyn, K. E., Hubbard, S., Poduska, J., et al. (2006). A comparison of girls' and boys' aggressive–disruptive behavior trajectories across elementary school: Prediction to young adult antisocial outcomes. Journal of Consulting and Clinical Psychology, 74, 500510.CrossRefGoogle ScholarPubMed
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177.CrossRefGoogle ScholarPubMed
Shaffer, D., Fisher, P., Lucas, C., Dulcan, M., & Schwab-Stone, M. (2000). NIMH diagnostic interview schedule for children version IV (NIMH DISC-IV): Description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 2838.CrossRefGoogle ScholarPubMed
Substance Abuse and Mental Health Services Administration, Office of Applied Studies (2008). Results from the 2007 National Survey on Drug Use and Health: National findings (NSDUH Series H-34, DHHS Publication No. SMA 08-4343). Rockville, MD: Author.Google Scholar
Thornberry, T. P., & Krohn, M. D. (1997). Peers, drug use, and delinquency. In Stoff, D. M., Breiling, J. & Maser, J. D. (Eds.), Handbook of antisocial behavior (pp. 218233). New York: Wiley.Google Scholar
Tolan, P. H., Gorman-Smith, D., & Henry, D. B. (2003). The developmental ecology of urban males' youth violence. Developmental Psychology, 39, 274291.CrossRefGoogle ScholarPubMed
US Department of Health and Human Services. (2001). Youth violence: A report of the surgeon general. Washington, DC: Office of the Surgeon General.Google Scholar
Vitaro, F., Brendgen, M., & Tremblay, R. E. (2000). Influence of deviant friends on delinquency: Searching for moderator variables. Journal of Abnormal Child Psychology, 28, 313325.CrossRefGoogle ScholarPubMed
Werthamer-Larsson, L., Kellam, S. G., & Wheeler, L. (1991). Effect of first-grade classroom environment on child shy behavior, aggressive behavior, and concentration problems. American Journal of Community Psychology, 19, 585602.CrossRefGoogle ScholarPubMed
Westling, E., Andrews, J. A., Hampson, S. E., & Peterson, M. (2008). Pubertal timing and substance use: The effects of gender, parental monitoring and deviant peers. Journal of Adolescent Health, 42, 555563.CrossRefGoogle ScholarPubMed