Article contents
Evaluation of Gamma Radiation-Induced Biochemical Changes in Skin for Dose Assesment: A Study on Small Experimental Animals
Published online by Cambridge University Press: 24 May 2018
Abstract
Researchers have been evaluating several approaches to assess acute radiation injury/toxicity markers owing to radiation exposure. Keeping in mind this background, we assumed that whole-body irradiation in single fraction in graded doses can affect the antioxidant profile in skin that could be used as an acute radiation injury/toxicity marker.
Sprague-Dawley rats were treated with CO-60 gamma radiation (dose: 1-5 Gy; dose rate: 0.85 Gy/minute). Skin samples were collected (before and after radiation up to 72 hours) and analyzed for glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPx).
Intra-group comparison showed significant differences in GSH, GPx, SOD, and CAT, and they declined in a dose-dependent manner from 1 to 5 Gy (P value<0.01, r value: 0.3-0.5). LPx value increased (P value<0.01, r value: 0.3-0.5) as the dose increased, except in 1 Gy (P value>0.05).
This study suggests that skin antioxidants were sensitive toward radiation even at a low radiation dose, which can be used as a predictor of radiation injury and altered in a dose-dependent manner. These biochemical parameters may have wider application in the evaluation of radiation-induced skin injury and dose assessment. (Disaster Med Public Health Preparedness. 2019;13:197–202).
- Type
- Original Research
- Information
- Copyright
- Copyright © Society for Disaster Medicine and Public Health, Inc. 2018
References
- 2
- Cited by