Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T06:10:15.745Z Has data issue: false hasContentIssue false

3.—The Cytology of the Parthenogenetic Australian Weevil Listroderes costirostris Schönh*

Published online by Cambridge University Press:  06 July 2012

Ann R. Sanderson
Affiliation:
Department of Biological Sciences, University of Dundee.

Synopsis

Karyograms prepared from ovarian and blastoderm cells of the parthenogenetic Australian Brown Vegetable Weevil demonstrate a consistent triploid condition with 30 chromosomes which can be grouped into 10 sets of homologues. Meiosis is replaced by a single mitotic-like division in which 30 univalent chromosomes, each composed of two chromatids, divide equationally between an ootid nucleus and a single polar nucleus. Prior to the differentiation of the oocytes a peculiar bouquet stage occurs in the cells of the end chamber of each ovariole, but the significance of this phase is not known. Arrested development in eggs from individuals of low fertility is investigated and the relationship of body size and chromosome number is discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Butt, F. H., 1936. The early embryological development of the parthenogenetic alfalfa snout beetle, Brachyrhinus ligustici L. Ann. Ent. Soc. Am., 29, 113.CrossRefGoogle Scholar
Cognetti, G., 1961. Endomeiosis in parthenogenetic lines in aphids. Experientia, 17, 168169.CrossRefGoogle ScholarPubMed
Hughes-Schrader, S., 1957. Differential polyteny and polyploidy in diaspine coccids (Homoptera: Coccoidea). Chromosoma, 8, 709718.CrossRefGoogle ScholarPubMed
Kawamura, M., 1953. Ecological studies on the vegetable weevil (Listroderes costirostris Schonh.). Gensei, 2, 2026.Google Scholar
Matthey, R., 1941. Étude biologique et cytologique de Saga pedo Pallas (Orth.-Tettigonidae). Revue Suisse Zool., 48., 91142.Google Scholar
Matthey, R., 1945. Cytologie de la parthénogénèse chez Pycnoscelus surinamensis L. (Blattariae). Ibid., 52, 1–109.Google Scholar
Mikulska, I., 1949. Cytological studies upon genus Otiorrhynchus (Curculionidae, Coleoptera) in Poland. Experientia, 5, 473475.CrossRefGoogle ScholarPubMed
Mikulska, I., 1953. The chromosomes of the parthenogenetic and thelytokian weevil Eusomus ovulum Germ. (Curculionidae, Coleoptera). Bull. Acad. Pol. Sci., (B.II, 1951), 293307.Google Scholar
Mikulska, I., 1960. New data to the cytology of the parthenogenetic weevils of the Genus Otiorrhynchus Germ. (Curculionidae, Coleoptera) from Poland. Cytologia, 25, 322333.CrossRefGoogle Scholar
Mulnard, J., 1954. Étude morphologique et cytochemique de l'oogénèse chez Acanthoscelides obtectus Say. Archs Biol. Paris, 65, 261314.Google Scholar
Narbel-Hofstetter, M., 1964. Les altérations de la méiose chez les animaux parthénogénétiques. Protoplasmatologia, 6, (2), 1163.Google Scholar
Omodeo, P., 1952, Cariologia dei Lumbricidae. Caryologia, 4, 173178.CrossRefGoogle Scholar
Peacock, A. D. and Weidmann, U., 1961. Recent work on the cytology of animal parthenogenesis. Przegl. Zool., 5, 108122.Google Scholar
Reisinger, E., 1940. Die cytologische Grundlage der parthenogenetischen Dioogonie. Chromosoma, 1, 531553.CrossRefGoogle Scholar
Reitalu, J., 1957. The appearance of nucleoli and heterochromatin in mesothelial cells and cancer cells of Ascites tumours of the mouse. Acta Path. Microbiol. Scand., 41, 257266.CrossRefGoogle ScholarPubMed
Sanderson, Ann R., 1956. Maturation in the parthenogenetic weevil Listroderes costirostris Schönh. (obliquus Gyll.). Proc. 14th Int. Congr. Zool. (Copenhagen 1953), 185186.Google Scholar
Sanderson, Ann R., 1960. The cytology of a diploid bisexual spider beetle, Ptinus clavipes Panzer, and its triploid gynogenetic form mobilis Moore. Proc. Roy. Soc. Edinb., B, 67, 333350.Google Scholar
Scholl, H., 1960. Die Oogenese einiger parthenogenetischer Orthocladiinen (Diptera). Chromosoma, 11, 380401.CrossRefGoogle Scholar
Schrader, F., 1923. A study of the chromosomes in three species of Pseudococcus. Arch. Zellforsch., 17, 4562.Google Scholar
Seiler, J., 1947. Die Zytologie eines parthenogenetischen Russelkafers Otiorrhynchus sulcatus. F. Chromosoma, 3, 88109.CrossRefGoogle Scholar
Smith, S. G., 1943. Techniques for the study of insect chromosomes. Can. Ent., 75, 2134.CrossRefGoogle Scholar
Smith, S. G., 1960. Chromosome numbers of Coleoptera II. Can. J. Genet. Cytol., 2, 6788.CrossRefGoogle Scholar
Smith, S. G., 1971, Parthenogenesis and polyploidy in beetles. Am. Zool., 11, 341349.CrossRefGoogle Scholar
Suomalainen, E., 1940 a. Polyploidy in parthenogenetic Curculionidae. Heriditas, 26.Google Scholar
Suomalainen, E., 1940 b. Beitrage zur Zytologie der parthenogenetischen Insekten. I. Coleoptera. Suomal. Tiedeakat. Toim., A, 54, (7), 1145.Google Scholar
Suomalainen, E., 1955, A further instance of geographical parthenogenesis and polyploidy in the weevils, Curculionidae, Suomal.Eläin-ja Kasvit. Seur. Van. Tiedon., 9, (suppl.), 350354.Google Scholar
Suomalainen, E., 1961. On morphological differences and evolution of different polyploid parthenogenetic weevil populations. Heriditas, 41, 309341.Google Scholar
Takenouchi, Y., 1957. Polyploidy in some parthenogenetic weevils (a preliminary note). Annotönes Zool. Jap., 30, 3841.Google Scholar
Takenouchi, Y., 1969 a. A further study on the chromosomes of the parthenogenetic weevil Listroderes costirostris Schönherr, in Japan. Cytologia, 3, 360368.CrossRefGoogle Scholar
Takenouchi, Y., 1969 b. On the chromosomes of the parthenogenetic weevil Listroderes costirostris Schönherr from Nagasaki Prefecture. Chromosome Inf. Serv., 10, 34.Google Scholar
Takenouchi, Y., 1970. Three further studies of the chromosomes of Japanese weevils (Coleoptera, Curculionidae)., Can. J. Genet. Cytol., 12, (2).CrossRefGoogle Scholar
Vandel, A., 1928. La Parthénogénèse. Paris.Google Scholar
Wagenaar, E. B., 1969. End-to-end chromosome attachments in mitotic interphase and their possible significance to meiotic chromosome pairing. Chromosoma, 26, 410426.CrossRefGoogle Scholar
Waterhouse, F. L., 1964. Colour polymorphism linked with incipient speciation in Tenthredo acerrima (Benson), (Hymen., Tenthredinidae) and speciation in sawfiies. Proc. Int. Congr. Ent., 249250.Google Scholar
Watson, J. R., 1937. Additional notes on Naupactus leucoloma. Rev. App. Entom., 26, 130.Google Scholar
Wilson, E. B., 1928. The Cell in Development and Heredity. New York.Google Scholar