Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T19:50:32.287Z Has data issue: false hasContentIssue false

Carbonate, silicate and fluid relationships in eclogites, Selje district and environs, SW Norway

Published online by Cambridge University Press:  03 November 2011

M. A. Lappin
Affiliation:
Department of Geology and Mineralogy, Marischal College, University of Aberdeen, Aberdeen, AB9 1 AS, Scotland
D. C. Smith
Affiliation:
Laboratoire de Minéralogie, Muséum National d'Histoire Naturelle, 61 Rue de Buffon, 75005 Paris, France.

Abstract

Orthopyroxene- and kyanite-lineage eclogites are distinguished on the basis of silicate and carbonate petrography and chemistry. Different textural and chemical types of magnesite, dolomite and calcite can be satisfactorily attributed to one of the three sequential metamorphic stages of eclogite history at anhydrous eclogite facies, hydrous eclogite facies and amphibolite facies. The chronological sequence of development of magnesite, dolomite and calcite matches the carbonate sequence found experimentally in synthetic peridotite-CO2-H2O systems during decompression. Magnesite and dolomite show reasonably regular Fe/Mg distribution relationships with silicates.

A new geothermobarometer based upon is provisionally calibrated. It yields T estimates for given P very similar to those given by the geothermobarometer, e.g. 759–829°C at 20 kb and 803–894°C at 40 kb. P is tentatively estimated at 30±10, 23±6 and 10 ± 3 kb respectively for the three metamorphic stages.

Fluid conditions after equilibration during each stage were either low or fluid-absent, but not low . A unique quartz-magnesite-dolomite vein represents an influx of CO2 in the P-T regime of instability of CO2 + pyroxene. Tectonic emplacement by deep-level obduction of diverse foreign source materials remains the petrogenetic model which best fits the data for these eclogites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akella, J. 1976. Garnet-pyroxene equilibria in the system CaSiO3—MgSiO3—A12O3 and in a natural mineral mixture. AM MINERAL 61, 589–98.Google Scholar
Banham, P. H. 1966. Fault mineralisation as the result of shearing in Norwegian basement rocks. NOR GEOL TIDSSKR 46, 181–92.Google Scholar
Banno, S. 1970. Classification of eclogites in terms of physical conditions of their origin. PHYS EARTH PLANET INTER 2, 405–21.CrossRefGoogle Scholar
Bickle, M. J. & Powell, R. 1977. Calcite-dolomite geothermometry for iron-bearing carbonates, CONTRIB MINERAL PETROL 59, 281–92.CrossRefGoogle Scholar
Brey, G. P. & Green, D. H. 1976. Solubility of CO2 in olivine melilitite at high pressures and the role of CO2 in the Earth's upper mantle. CONTRIB MINERAL PETROL 55, 217–30.CrossRefGoogle Scholar
Brey, G. P., Green, D. H. & Ryabchikov, J. D. 1981. Carbonates in the Earth's Mantle. TERRA COGNITA 1, 40.Google Scholar
Bryhni, I. 1966. Reconnaissance studies of gneisses, ultrabasites, eclogites and anorthosites in outer Nordfjord, Western Norway. NOR GEOL UNDERS 241, 168.Google Scholar
Bryhni, I., Bollingberg, H. J. & Graff, P.-R. 1969. Eclogites in quartzofeldspathic gneisses of Nordfjord, West Norway. NOR GEOL TIDSSKR 49, 193225.Google Scholar
Bryhni, I., Green, D. H., Heier, K. & Fyfe, W. S. 1970. On the occurrence of eclogite in Western Norway. CONTRIB MINERAL PETROL 26, 12–9.CrossRefGoogle Scholar
Bryhni, I. & Griffin, W. L. 1971. Zoning in eclogite garnets from Nordfjord, West Norway. CONTRIB MINERAL PETROL 32, 112–25.CrossRefGoogle Scholar
Bryhni, I., Krogh, E. J. & Griffin, W. L. 1977. Crustal derivation of Norwegian eclogites: a review. NEUES JAHRB MINERAL ABH 130, 4968.Google Scholar
Carpenter, M. A. & Smith, D. C. 1981. Solid solution and cation ordering limits in high-temperature sodic pyroxenes from the Nybö eclogite pod, Norway. MINERAL MAG 44, 3744.CrossRefGoogle Scholar
Dunham, A. C. & Wilkinson, F. C. F. 1978. Accuracy, precision and detection limits of energy-dispersive electron-microprobe analysis of silicates. X-RAY SPECTROSC 7, 50–6.CrossRefGoogle Scholar
Dunham, A. C. & Wilkinson, F. C. F. 1980. The suitability of energy-dispersive electron-microprobe analysis for the investigation of stainless steels. X-RAY SPECTROSC 9, 812.CrossRefGoogle Scholar
Eggler, D. H. 1975. Peridotite-carbonate relations in the system CaO-MgO-SiO2-CO2. CARNEGIE INST WASHINGTON YEARB 74, 468–74.Google Scholar
Eggler, D. H. 1976. Does CO2 cause partial melting in the low velocity layer of the mantle? GEOLOGY 4, 6972.2.0.CO;2>CrossRefGoogle Scholar
Eggler, D. H. 1978. Stability of dolomite in a hydrous mantle with implications for the mantle solidus. GEOLOGY 6, 397400.2.0.CO;2>CrossRefGoogle Scholar
Eggler, D. H. & Holloway, J. R. 1977. Partial melting of peridotite in the presence of H2O and CO2: principles and review. BULL OREGON STATE DEP GEOL MINER IND 96, 1536.Google Scholar
Eggler, D. H., Kushiro, I. & Holloway, J. R. 1976. Stability of carbonate minerals in a hydrous mantle. CARNEGIE INST WASHINGTON YEARB 75, 631–6.Google Scholar
Ellis, D. J. & Green, D. H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. CONTRIB MINERAL PETROL 71, 1322.CrossRefGoogle Scholar
Eskola, P. 1921. On the eclogites of Norway. SKR VIDENSKAPS-SELSK CHRISTIANA MAT-NATURV KL 18, 1118.Google Scholar
Essene, E. J., Hensen, B. J. & Green, D. H. 1970. Experimental study of amphibolite and eclogite stability. PHYS EARTH PLANET INTER 3, 378–84.CrossRefGoogle Scholar
Fry, N. & Fyfe, W. S. 1969. Eclogites and water pressure. CONTRIB MINERAL PETROL 24, 16.CrossRefGoogle Scholar
Fyfe, W. S., Price, N. J. & Thompson, A. B. 1978. Fluids in the Earth's Crust. Oxford: Elsevier.Google Scholar
Ganguly, J. 1978. Garnet solid solution geothermometry based on Fe-Mg distribution coefficients. EOS TRANS AM GEOPHYS UNION 59, 395.Google Scholar
Ganguly, J. 1979. Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. GEOCHIM COSMOCHIM ACTA 43, 1021–9.CrossRefGoogle Scholar
Goldsmith, J. R. & Heard, H. C. 1961. Subsolidus relations in the system CaCO3-MgCO3. J GEOL 69, 4574.CrossRefGoogle Scholar
Green, D. H. 1969. Mineralogy of two Norwegian eclogites. In Contributions to Physico-chemical Petrology 1 (Korzhinskii volume) 3744. Moscow: Nauka.Google Scholar
Green, D. H. 1977. Experimental petrology related to extreme metamorphism. TECTONOPHYSICS 43, 15.CrossRefGoogle Scholar
Green, D. H. & Mysen, B. O. 1972. Genetic relationship between eclogite and hornblende + plagioclase pegmatite in western Norway. LITHOS 5, 147–61.CrossRefGoogle Scholar
Green, H. W. 1972. A CO2 charged asthenosphere. NATURE PHYS SCI 238, 25.CrossRefGoogle Scholar
Greenwood, H. J. 1975. Buffering of pore fluids by metamorphic reactions. AM J SCI, 275, 578–92.CrossRefGoogle Scholar
Hamm, H.-M. & Vieten, K. 1971. Zur Berechnung der kristallchemischen Formel und des Fe3+-Gehaltes von Klinopyrox-enen aus Electronestrahl-Microanalysen. NEUES JAHRB MINERAL MONATSH 310–4.Google Scholar
Hoefs, J. & Touret, J. 1975. Fluid inclusions and carbon isotope study for Bamble granulites (south Norway). CONTRIB MINERAL PETROL 52, 165–74.CrossRefGoogle Scholar
Holland, T. J. B. 1979. High water activities in the generation of high pressure kyanite eclogites of the Tauern window, Austria. J GEOL 87, 127.CrossRefGoogle Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminum silicate phase diagram. AM J SCI 271, 97131.CrossRefGoogle Scholar
Howells, S. & O'Hara, M. J. 1978. Low solubility of alumina in enstatite and uncertainties in estimated palaeogeotherms. PHIL TRANS R SOC LONDON 288A, 471–86.Google Scholar
Krogh, E. J. 1977. Evidence of Precambrian continent-continent collision is Western Norway. NATURE 267, 17–9.CrossRefGoogle Scholar
Krogh, E. J. & Råheim, A. 1978. Temperature and pressure dependence of Fe-Mg partitioning between garnet and phengite, with particular reference to eclogites. CONTRIB MINERAL PETROL 66, 7580.CrossRefGoogle Scholar
Kushiro, I., Satake, H. & Akimoto, S. 1975. Carbonate-silicate reactions at high pressures and possible presence of dolomite and magnesite in the upper mantle. EARTH PLANET SCI LETT 28, 116–20.CrossRefGoogle Scholar
Lappin, M. A. 1962. The eclogites, dunites and anorthosites of the Selje and Almklovdalen districts, Nordfjord. Unpublished Ph.D. Thesis, Durham University.Google Scholar
Lappin, M. A. 1966. The field relationships of basic and ultrabasic masses in the Basal gneiss complex of Stadlandet and Almklovdalen, Nordfjord, Southwestern Norway. NOR GEOL TIDSSKR 46, 439–96.Google Scholar
Lappin, M. A. 1974. Eclogites from the Sunndal-Grubse ultramafic mass Almklovdalen, Norway and the T-P history of the Almklovdalen masses. J PETROL 15, 567601.CrossRefGoogle Scholar
Lappin, M. A. 1977. Crustal and in situ origin of Norwegian eclogites. NATURE 269, 730.CrossRefGoogle Scholar
Lappin, M. A., Pidgeon, R. T. & van Breemen, O. 1979. Geo-chronology of basal gneisses and mangerite syenites, Stadlandet, west Norway. NOR GEOL TIDSSKR 59, 161–81.Google Scholar
Lappin, M. A. & Smith, D. C. 1978. Mantle-equilibrated eclogite pods from the Basal Gneisses of the Selje district, Western Norway. J PETROL 19, 530–84.CrossRefGoogle Scholar
Leake, B. E. 1978. Nomenclature of amphiboles, MINERAL MAG 42, 533–63.CrossRefGoogle Scholar
Luckscheiter, B. & Morteani, G. 1980a. Microthermometrical and chemical studies of fluid inclusions in minerals from Alpine veins from the Penninic rocks of the central and western Tauern Window (Austria/Italy). LITHOS 13, 6177.CrossRefGoogle Scholar
Luckscheiter, B. & Morteani, G. 1980b. The fluid phase in eclogites, glaucophane-bearing rocks and amphibolites from the Central Tauern Window as deduced from fluid inclusion studies. TSCHERMAKS MINERAL PETROGR MITT 27, 99111.CrossRefGoogle Scholar
McGetchin, T. R. & Besancon, J. R. 1973. Carbonate inclusions in mantle derived pyropes. EARTH PLANET SCI LETT 18, 408–10.CrossRefGoogle Scholar
Mori, T. & Green, D. H. 1978. Laboratory duplication of phase equilibria observed in natural garnet lherzolites. J GEOL 86, 8397.CrossRefGoogle Scholar
Murck, B. W., Burrus, R. C. & Hollister, L. S. 1978. Phase equilibria in fluid inclusions in ultramafic xenoliths. AM MINERAL 63, 40–6.Google Scholar
Mysen, B. O. 1971. Petrology and geochemistry of eclogite and surrounding rocks around Ulsteinvik on Hareidlandet, Western Norway. Unpublished Cand. Real. Thesis, Oslo University.Google Scholar
Mysen, B. O. 1974. Phase relations of garnet websterite + H2O. CARNEGIE INST WASHINGTON YEARB 73, 240–1.Google Scholar
Mysen, B. O. & Heier, K. S. 1971. A note on the field occurrence of a large eclogite on Hareid, Sunnmore, Western Norway. NOR GEOL TIDSSKR 51, 93–6.Google Scholar
Mysen, B. O. & Heier, K. S. 1972. Petrogenesis of eclogites in high grade metamorphic gneisses exemplified by the Hareidland eclogite, Western Norway. CONTRIB MINERAL PETROL 36, 7394.CrossRefGoogle Scholar
Navrotsky, A. & Loucks, D. 1977. Calculation of subsolidus phase relations in carbonates and pyroxenes. PHYS CHEM MINERALS 1, 109–27.CrossRefGoogle Scholar
Nolan, J. 1969. Physical properties of synthetic and natural pyroxenes in the system diopside-hedenbergite-acmite. MINERAL MAG 37, 216–29.CrossRefGoogle Scholar
Oh, K. S., Morikawa, H., Iwai, S. & Aoki, H. 1973. The crystal structure of magnesite. AM MINERAL 58, 1029–33.Google Scholar
O'Hara, M. J. 1976. Origin of Norwegian eclogites. In Biggar, G. M. (ed.) Progress in Experimental Petrology Third Progress Report, 252. London: Natural Environment Research Council.Google Scholar
O'Hara, M. J. 1978. Paleogeotherms: the variations of temperature with pressure in crust and mantle at times past. In Mackenzie, W. F.Progress in Experimental Petrology Fourth Progress Report, 170–4. London: Natural Environment Research Council.Google Scholar
Råheim, A. & Green, D. H. 1974a. Experimental determinations of the temperature-pressure dependence of the Fe-Mg partition coefficient for co-existing garnet and clinopyroxene. CONTRIB MINERAL PETROL 48, 179203.CrossRefGoogle Scholar
Råheim, A. & Green, D. H. 1974b. Experimental petrology of lunar highland basalt composition and application to models for the lunar interior. J GEOL 82, 607–22.CrossRefGoogle Scholar
Roedder, E. 1965. Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. AM MINERAL 50, 1746–82.Google Scholar
Rosenhauer, M., Woermann, E., Knecht, B. & Ulmer, C. G. 1977. The stability of graphite and diamond as a function of the oxygen fugacity of the mantle. EXTENDED ABSTR SECOND INT KIMBERLITE CONF (Sante Fe, New Mexico).Google Scholar
Rutstein, M. S. & Yund, R. A. 1969. Unit-cell parameters of synthetic diopside-hedenbergite solid-solutions. AM MINERAL 54, 238–45.Google Scholar
Saxena, S. K. 1979. Garnet-clinopyroxene geothermometer. CONTRIB MINERAL PETROL 70, 229–35.CrossRefGoogle Scholar
Smith, D. 1977. Hydrous minerals and carbonates in peridotite inclusions from the Green Knobs and Buell Park kimberlitic diatremes on the Colorado Plateau. EXTENDED ABSTR SECOND INT KIMBERLITE CONF (Sante Fe, New Mexico).Google Scholar
Smith, D. C. 1971. A tourmaline-bearing eclogite from Sunnmöre, Norway. NOR GEOL TIDSSKR 51, 141–7.Google Scholar
Smith, D. C. 1976a. The geology of the Vartdal area, Sunnmöre, Norway and the petrochemistry of the Sunnmöre eclogite suite. Unpublished Ph.D. Thesis, Aberdeen University.Google Scholar
Smith, D. C. 1976b. The recognition of two distinct pressure-temperature regimes of eclogite metamorphism in the Sunnmöre Eclogite Suite, Norway. FORTSCHR MINERAL 54, 94.Google Scholar
Smith, D. C. 1977. Aluminiumholdig titanitt i eklogitter fra Sunnmöre. GEOLOGNYTT 10, 32–3.Google Scholar
Smith, D. C. 1980a. A tectonic mélange of foreign eclogites and ultramafites in the Basal Gneiss Region, West Norway. NATURE 287, 366–8.CrossRefGoogle Scholar
Smith, D. C. 1980b. Exceptional mineral compositions in very high pressure hydrous-eclogite-facies parageneses in the Precam-brian suite of eclogite lenses in the Selje and Vartdalsfjorden districts of the Basal gneiss region, S.W. Norway. 26th INT GEOL CONGR ABSTR 1, 92.Google Scholar
Smith, D. C. 1980c. Highly aluminous sphene (titanite) in natural high pressure hydrous-eclogite-facies rocks from Norway and Italy, and in experimental runs at high pressure. 26th INT GEOL CONGR ABSTR 1, 145.Google Scholar
Smith, D. C. 1981. A reappraisal of factual and mythical evidence concerning the metamorphic and tectonic evolution of eclogite-bearing terrain in the Caledonides. TERRA COGNITA 1, 73–4.Google Scholar
Smith, D. C., Mottana, A. & Rossi, G. 1980. Crystal-chemistry of a unique jadeite-rich acmite-poor omphacite from the Nybö eclogite pod, Sörpollen, Nordjord, Norway. LITHOS 13, 227–36.CrossRefGoogle Scholar
Touret, J. 1977. The significance of fluid inclusions in metamorphic rocks. In Fraser, D. G. (ed.) Thermodynamics in Geology, 203–27. Dordrecht: Reidel.CrossRefGoogle Scholar
Ungaretti, L., Smith, D. C. & Rossi, G. 1981. Crystal-chemistry by X-ray structure refinement and electron microprobe analysis of a series of sodic–calcic to alkali-amphiboles from the Nybö eclogite pod, Norway. BULL MINERAL 104, 400–12.Google Scholar
Vieten, K. & Hamm, H. M. 1978. Additional notes ‘On the calculation of the crystal chemical formula of clinopyroxenes and their contents of Fe3+ from microprobe analyses’. NEUES JAHRB MINERAL MONATSH 2, 7183.Google Scholar
Wells, P. R. A. 1979. Chenical and thermal evolution of Archaean sialic crust, southern West Greenland. J PETROL 20, 187226.CrossRefGoogle Scholar
Wood, B. J. 1976. The partitioning of iron and magnesium between garnet and clinopyroxene. CARNEGIE INST WASHINGTON YEARB 75, 571–4.Google Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relations in simple and complex systems. CONTRIB MINERAL PETROL 42, 109–24.CrossRefGoogle Scholar
Wood, B. J. & Fraser, D. G. 1976. Elementary thermodynamics for geologists. Oxford: University Press.Google Scholar
Wyckoff, R. W. G. 1964. Crystal Structures 2nd edn, Vol. 2. New York: Interscience.Google Scholar
Wyllie, P. J. 1977. Mantle fluid compositions buffered in peridotite—CO2—H2O by carbonates, amphibole and phlogopite. J GEOL 86, 687713.CrossRefGoogle Scholar
Wyllie, P. J. 1979. Magmas and volatile components. AM MINERAL 64, 469500.Google Scholar