Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T00:09:05.572Z Has data issue: false hasContentIssue false

The dykes and sills of the Early Tertiary Faeroe Island basalt plateau

Published online by Cambridge University Press:  03 November 2011

N. Hald
Affiliation:
Geologisk Museum, Øster Voldgade 5–7, DK-1350 København, Denmark
R. Waagstein
Affiliation:
Danmarks Geologiske Undersøgelse, Debesartrød, FR-100 Tórshavn, Faeroe Islands

Abstract

The Early Tertiary basalt plateau of the Faeroe Islands is cut by dykes and sills. Chemical analyses show a two-fold division of the intrusive rocks into a group of low-TiO2 (0·73–1·93%), MORB-type tholeiitic basalts and a group of high-TiO2 (2·09–3·90%) tholeiitic basalts. The low-TiO2 group comprises about 15% picrites and olivine-phyric basalts and 85% plagioclase-phyric basalts, and shows a chemical range largely explicable in terms of low-pressure fractional crystallisation of olivine ± plagioclase ± clinopyroxene. The high-TiO2 group is strongly dominated by plagioclase-phyric basalts with only few olivine-phyric compositions. The chemical trends are less regular than those formed by the low-TiO2 basalt dykes and a number of subgroups may be identified on the basis of bulk rock chemistry. Dykes belonging to a specific subgroup were probably fed from the same magma chamber.

Petrographically and chemically the dykes and sills are clearly related to the upper 2·5 km of the lava sequence. Field evidence suggests that some of the dykes were contemporaneous with the exposed lavas, while other dykes and the sills were intruded in response to a slight doming of the plateau during the final stages of volcanic activity. Our investigations demonstrate that high-TiO2 and low-TiO2 magmas were both emplaced until the very end of magmatism, with the latter being mainly concentrated in the northern part of the archipelago. We briefly sketch a possible relationship between the supposed NE-Atlantic mantle plume, the distribution of the various magma types and the location of the Early Tertiary continental splitting zone north of the islands.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bollingberg, H., Brooks, C. K. & Noe-Nygaard, A. 1975. Trace element variations in the Faeroese basalts and their possible relationship to ocean floor spreading history. BULL GEOL SOC DENMARK 24, 5560.Google Scholar
Bott, M. H. P. 1975. Structure and evolution of the north Scottish shelf, the Faeroe block and the intervening region. In Woodland, A. W. (ed.) Petroleum and the Continental Shelf of North West Europe, Vol. 1, Geology, 105–13. Barking: Applied Science Publ.Google Scholar
Bott, M. H. P., Sunderland, J., Smith, P. J., Casten, U. & Saxov, S. 1974. Evidence for continental crust beneath the Faeroe Islands. NATURE 248, 202–4.Google Scholar
Bott, M. H. P., Nielsen, P. H. & Sunderland, J. 1976. Converted P-waves originating at the continental margin between the Faeroe-Iceland Ridge and the Faeroe block. GEOPHYS J R ASTR SOC 44, 229–38.CrossRefGoogle Scholar
Brooks, C. K. & Nielsen, T. F. D. 1982. The E Greenland continental margin: a transition between oceanic and continental crust. J. GEOL SOC LONDON 139, 265–75.Google Scholar
Campbell, I. H. & Griffiths, R. W. 1990. Implication of mantle plume structure for the evolution of flood basalts. EARTH PLANET SCI LETT 99, 7993.Google Scholar
Casten, U. 1974. Eine Analyse seismischer Registrierungen Uon den Faröer Inseln. Hamburger Geophysikalische Einzelschriften 21, Geophysikalische Institute der Universität Hamburg.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1978. Rock-forming Minerals. Vol. 2A, Single-chain Silicates (2nd edition). London: Longman.Google Scholar
Eldholm, O., Thiede, J. & Taylor, E. 1989. Evolution of the Vøring volcanic margin. PROCEEDINGS OF THE OCEAN DRILLING PROGRAM SCIENTIFIC RESULTS 104, 10331065.Google Scholar
Elthon, D. 1979. High magnesia liquids as the parental magma for ocean floor basalts. NATURE 278, 514–18.Google Scholar
Feigenson, M. D., Hofmann, A. W. & Spera, F. J. 1983. Case studies in the origin of basalt. II. The transition from tholeiitic to alkalic volcanism on Kohala volcano, Hawaii. CONTRIB MINERAL PETROL 84, 390405.Google Scholar
Francis, D. 1985. The Baffin Bay lavas and the value of picrites as analogues of primary magmas. CONTRIB MINERAL PETROL 89, 144–54.Google Scholar
Frey, F. A., Green, D. H. & Roy, S. D., 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to melilitites from South-Eastern Australia utilizing geochemical and experimental petrological data. J PETROL 19, 463513.Google Scholar
Gariépy, C., Ludden, J. & Brooks, C. 1983. Isotopie and trace element constraints on the genesis of the Faeroe lava pile. EARTH PLANET SCI LETT 63, 257–72.Google Scholar
Gibb, F. G. F. & Kanaris-Sotiriou, R. 1988. The geochemistry and origin of the Faeroe-Shetland sill complex. In Morton, A. C. & Parson, L. M. (eds) Early Tertiary Volcanism and the Opening of the NE Atlantic. GEOLOGICAL SOCIETY SPECIAL PUBLICATION 39, 241–52.Google Scholar
Gill, R. C. O., Nielsen, T. F. D., Brooks, C. K. & Ingram, G. A. 1988. Tertiary volcanism in the Kangerdlugssuaq region, E. Greenland; trace-element geochemistry of the Lower Basalts and tholeiitic dyke swarms. In Morton, A. C. & Parson, L. M. (eds) Early Tertiary Volcanism and the Opening of the NE Atlantic. GEOLOGICAL SOCIETY SPECIAL PUBLICATION 39, 161–79.Google Scholar
Griffiths, R. W. & Campbell, I. H. 1990. Stirring and structure in mantle starting plumes. EARTH PLANET SCI LETT 99, 6678.Google Scholar
Gunn, B. M. 1971. Trace element partitioning during olivine fractionation of Hawaiian basalts. CHEM GEOL 8, 113.CrossRefGoogle Scholar
Hald, N. & Waagstein, R. 1983. Silicic basalts from the Faeroe Islands: Evidence of crustal contamination. In Bott, M. H. P., Saxov, S., Talwani, M. & Thiede, J. (eds) Structure and Development of the Greenland-Scotland Ridge, 343–49. New York/London: Plenum Press.CrossRefGoogle Scholar
Hald, N. & Waagstein, R. 1984. Lithology and chemistry of a 2-km sequence of Lower Tertiary tholeiitic lavas drilled on Suduroy, Faeroe Islands (Lopra-1). In Berthelsen, O., Noe-Nygaard, A. & Rasmussen, J. (eds) The Deep Drilling Project 1980–1981 in the Faeroe Islands, 1538. Tórshavn: Føroya Fródskaparfelag.Google Scholar
Harrison, R. K. & Merriman, R. J. 1984. Petrology, mineralogy and chemistry of basaltic rocks: Leg 81. In Roberts, D. G., Schnitker, D.et al. (eds) Initial Reports of the Deep Sea Drilling Project 81, 743–74. U.S. Washington: Govt. Printing Office.Google Scholar
Holm, P. M. 1988. Nd, Sr and Pb isotope geochemistry of the Lower Lavas, East Greenland Tertiary Igneous Province. In Morton, A. C. & Parson, L. M. (eds) Early Tertiary Volcanism and the Opening of the NE Atlantic. GEOLOGICAL SOCIETY SPECIAL PUBLICATION 39, 181–95.Google Scholar
Jakobsson, S. P. 1979. Petrology of Recent basalts of the eastern volcanic zone, Iceland. ACTA NATURALIA ISLANDICA 26, 103 pp.Google Scholar
Klein, E. M. & Langmuir, C. H. 1987. Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. J GEOPHYS RES 92, 80898115.CrossRefGoogle Scholar
Kua, L. C., Lee, J. H., Essene, E. J. & Peacor, D. R. 1986. Occurrence chemistry, and origin of immiscible silicate glasses in a tholeiitic basalt: a TEM/AEM study. CONTRIB MINERAL PETROL 94, 90–8.Google Scholar
Larsen, L. M., Watt, W. S. & Watt, M. 1989. Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. GEOL SURV GREENLAND BULL 157, 164 pp.Google Scholar
Liotard, J. M., Barsczus, H. G., Dupuy, C. & Dostal, J. 1986. Geochemistry and origin of basaltic lavas from Marquesas Archipelago, French Polynesia. CONTRIB MINERAL PETROL 92, 260–8.CrossRefGoogle Scholar
Nielsen, T. D. F. 1978. The Tertiary dike swarm of the Kangerdlugssuaq Area, East Greenland. An example of magmatic development during continental break-up. CONTRIB MINERAL PETROL 67, 63–8.Google Scholar
Nielsen, T. D. F. 1987. Tertiary alkaline magmatism in East Greenland: a review. In Fitton, J. G. & Upton, B. G. J. (eds) Alkaline Igneous Rocks. GEOLOGICAL SOCIETY SPECIAL PUBLICATION 30, 489515.Google Scholar
Nielsen, T. D. F., Soper, N. J., Brooks, C. K., Faller, A. M., Higgins, A. C. & Matthews, D. W. 1981. The pre-basaltic sediments and the Lower Basalts at Kangerdlugssuaq, East Greenland: their stratigraphy, lithology, palaeomagnetism and petrology. MEDDR GR0NLAND GEOSCI 6, 1981. 25 pp.Google Scholar
Noe-Nygaard, A. & Rasmussen, J. 1968. Petrology of a 3,000 metre sequence of basaltic lavas in the Faeroe Islands. LITHOS 1, 286304.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic rocks determined using trace element analyses. EARTH PLANET SCI LETT 19, 290300.Google Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. CONTRIB MINERAL PETROL 69, 3347.Google Scholar
Philpotts, A. R. 1982. Composition of immiscible liquids in volcanic rocks. CONTRIB MINERAL PETROL 80, 201–18.CrossRefGoogle Scholar
Platten, I. M. & Watterson, J. 1987. Magma flow and crystallization in dyke fissures. In Halles, H. C. & Fahrig, W. F. (eds) Mafic dyke swarms. GEOL ASS CAN SPEC PAP 34, 6573.Google Scholar
Rasmussen, J. 1979. Schematic 3-D model of a dyke in the Faeroese basalt plateau. BULL GEOL SOC DENMARK 27, spec. issue, 7984.Google Scholar
Rasmussen, J. & Noe-Nygaard, A. 1969. Beskrivelse til geologisk kort over Færøerne. DANM GEOL UNDERS 1. series, 24, 370 pp.Google Scholar
Rasmussen, J. & Noe-Nygaard, A. 1970. Geology of the Faeroe Islands. DANM GEOL UNDERS 1. series, 25, 142 pp.Google Scholar
Roeder, P. L. & Emslie, R. F. 1970. Olivine-liquid equilibrium. CONTRIB MINERAL PETROL 29, 275–89.Google Scholar
Schilling, J.-G. & Noe-Nygaard, A. 1974. Faeroe-Iceland plume: rare earth evidence. EARTH PLANET SCI LETT 24, 114.CrossRefGoogle Scholar
Schilling, J.-G., Sigurdsson, H. & Kingsley, R. H. 1978. Skagi and western neovolcanic zones in Iceland: 2. Geochemical variations. J GEOPHYS RES 83, 39834002.Google Scholar
Schilling, J.-G., Bergeron, M. B. & Evans, R. 1980. Halogens in the mantle beneath the North Atlantic. PHILOS TRANS R SOC LONDON A297, 147–78.Google Scholar
Sigurdsson, H. & Schilling, J.-G. 1976. Spinels in the Mid-Atlantic Ridge basalts: chemistry and occurrence. EARTH PLANET SCI LETT 29, 720.Google Scholar
Smythe, D. K. 1983. Faeroe-Shetland escarpment and continental margin north of the Faeroes. In Bott, M. H. P., Saxov, S., Talwani, M. & Thiede, J. (eds) Structure and Development of the Greenland-Scotland Ridge, 109–21. New York/London: Plenum Press.Google Scholar
Swanson, D. A., Wright, T. L. & Heiz, R. T. 1975. Linear vent systems and estimated rates of magma production and eruption for the Yakima basalt on the Columbia Plateau. AM J SCI 275, 877905.Google Scholar
Tarney, J., Wood, D. A., Saunders, A. D., Cann, J. R. & Varet, J. 1980. Nature of mantle heterogeneity in the North Atlantic: evidence from deep sea drilling. PHILOS TRANS R SOC LOND A297, 179202.Google Scholar
Waagstein, R. 1977. The Geology of the Faeroe Plateau. Unpubl. thesis, Univ. of Copenhagen.Google Scholar
Waagstein, R. 1988. Structure, composition and age of the Faeroe basalt plateau. In Morton, A. C. & Parson, L. M. (eds.) Early Tertiary Volcanism and the Opening of the NE Atlantic. GEOLOGICAL SOCIETY SPECIAL PUBLICATION 39, 225–38.Google Scholar
Waagstein, R. & Hald, N. 1984. Structure and petrography of a 660 m lava sequence from the Vestmanna-1 drill hole, lower and middle basalt series, Faeroe Islands. In Berthelsen, O., Noe-Nygaard, A. & Rasmussen, J. (eds) The Deep Drilling Project 1980–1981 in the Faeroe Islands, 3970. Tórshavn: Føroya Fródskaparfelag.Google Scholar
Waagstein, R., Hald, N., Jørgensen, O., Nielsen, P. H., Noe-Nygaard, A., Rasmussen, J. & Schönharting, G. 1984. Deep drilling on the Faeroe Islands. BULL GEOL SOC DENMARK 32, 133–38.Google Scholar
Wood, D. A. 1979. Dynamic partial melting: its application to the petrogenesis of basalts erupted in Iceland, the Faeroe Islands, the Isle of Skye (Scotland) and the Troodos Massif (Cyprus). GEOCHIM COSMOCHIM ACTA 43, 1031–46.Google Scholar
Wood, D. A., Joron, J.-L., Treuil, M., Norry, M. & Tarney, J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. CONTRIB MINERAL PETROL 70, 319–39.Google Scholar
Wright, T. L. & Fiske, R. S. 1971. Origin of differentiated hybrid lavas of Kilauea Volcano, Hawaii. J PETROL 12, 165.Google Scholar