Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T00:56:14.979Z Has data issue: false hasContentIssue false

Dynamic ecophenotypy in the Silurian Monograptidae (Graptolithina)

Published online by Cambridge University Press:  03 December 2021

Misha WHITTINGHAM*
Affiliation:
Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
Andrej SPIRIDONOV
Affiliation:
Department of Geology and Mineralogy, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania.
Sigitas RADZEVIČIUS
Affiliation:
Department of Geology and Mineralogy, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania.
*
*Corresponding author. Email: mishawhittingham@cmail.carleton.ca

Abstract

The monograptids from the Wenlock and Ludlow (mid- to late Silurian) of the palaeotropical Baltic Basin exhibit thickened ring structures (sicular annuli) over their initial phase of growth. Appearing before the lundgreni extinction event, they persisted throughout the remainder of the Silurian, fluctuating in number over that period. To better understand the mechanisms controlling their development and variation, counts of sicular annuli were taken from three well cores in Lithuania, compared between species in each sample and compared with contemporaneous gamma ray data, accompanied by the stable isotope (δ13C), and acritarch diversity data. Mean counts of annuli fluctuated greatly over the studied interval, but showed negligible variation between species, indicating that the trait is ecophenotypic. The fluctuation in annulus presence aligned with variations in fourth- and fifth-order cycles derived from the gamma ray trends, which represent significant sea level fluctuations, δ13C ratios, and primary productivity, suggesting that annuli were more plentiful in high-stand states which are associated with the wetter climate and more productive conditions, whereas dryer, less productive conditions were not conducive to annulus development. In light of this evidence, we hypothesise that the action of upwelling as a result of intensified storm events during wetter periods would have encouraged phytoplankton blooms, increasing construction of annuli. These results show the potential utility of sicular annuli in the study of Silurian climate change and give new insights into graptolite palaeoecology.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Berry, W. B. N. & Wilde, P.. 1990. Graptolite biogeography: implications for palaeogeography and palaeoceanography. Geological Society Memoir 12(1), 129–37.CrossRefGoogle Scholar
Brock, J. C., McClain, C. R., Luther, M. E. & Hay, W. M. 1991. The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979. Journal of Geophysical Research 96, 20623–42.CrossRefGoogle Scholar
Calner, M. 2005. Silurian carbonate platforms and extinction events—ecosystem changes exemplified from Gotland, Sweden. Facies 51, 584–91.CrossRefGoogle Scholar
Calner, M. 2008. Silurian global events – at the tipping point of climate change. In Elewa, A. M. T. (ed.) Mass extinctions, 2158. Berlin and Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Calner, M., Kozłowska, A., Masiak, M. & Schmitz, B. 2006. A shoreline to deep basin correlation chart for the middle Silurian coupled extinction-stable isotopic event. GFF 128, 7984.CrossRefGoogle Scholar
Cheetham, J. H., Jackson, J. B. C. & Hayek, L. C. 1995. Quantitative genetics of bryozoan phenotypic evolution. III. Phenotypic plasticity and the maintenance of genetic variation. Evolution 49, 290–96.CrossRefGoogle ScholarPubMed
Chen, C. A., Liu, C., Chuang, W. S., Yang, Y. K., Shiah, F., Tang, T. Y. & Chung, S. W. 2003. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. Journal of Marine Systems 42, 6579.CrossRefGoogle Scholar
Cichon-Pupienis, A., Littke, R., Froidl, F. & Lazauskienė, J. 2020. Depositional history, source rock quality and thermal maturity of Upper Ordovician-Lower Silurian organic-rich sedimentary rocks in the central part of the Baltic Basin (Lithuania). Marine and Petroleum Geology 112, 104083.CrossRefGoogle Scholar
Cooper, R. A., Rigby, S., Loydell, D. K. & Bates, D. E. B. 2012. Palaeoecology of the Graptoloidea. Earth Science Reviews 112, 2341.CrossRefGoogle Scholar
Cramer, B. D., Brett, C. E., Melchin, M. J., Maennik, P., Kleffner, M. A., McLaughlin, P. I., Loydell, D. K., Munnecke, A., Jeppsson, L., Corradini, C. & Brunton, F. R. 2011. Revised correlation of Silurian provincial series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia 44, 185202.CrossRefGoogle Scholar
Einasto, P. E., Abushik, A. F., Kaljo, D. L., Koren, T. N., Modzalevskaya, T. L., Nestor, N. E. & Klaamann, E. 1986. Osobiennosti silurskogo osadkonakopleniya iassociacii fauny v kraevych basseinach Pribaltiki i Podolii. In Kaljo, D. L. & Klaamann, E. (eds) Teoria i Opyt Ekostratigrafii, 6572. Tallinn: Valgus.Google Scholar
Francis, J. A. & Vavrus, S. J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, L06801.CrossRefGoogle Scholar
Gelūnaitė, A. & Spiridonov, A. 2015. The preservation of total organic carbon of the Silurian Pridoli strata in the Milaičiai-103 well core of Western Lithuania. Geologija. Geografija 1, 6977.CrossRefGoogle Scholar
Gittings, J. A., Raitsos, D. E., Krokos, G. & Hoteit, I. 2018. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Scientific Reports 8, 2240.CrossRefGoogle Scholar
Goswami, B. N., Venugopal, V., Sengupta, D., Madhussodanan, M. S. & Xavier, P. K. 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442–45.CrossRefGoogle Scholar
Green, O. R. 2001. Extraction techniques for uncrushed graptolites. In Green, O. R. (ed.) A manual of practical laboratory and field techniques in paleobiology, 331–33. London: Klewer Academic.CrossRefGoogle Scholar
Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. 2006. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–89.CrossRefGoogle ScholarPubMed
Hammer, Ø, Harper, D. A. T. & Ryan, P. D. 2015. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.Google Scholar
Hobgood, J. S. & Cerveny, R. S. 1988. Ice-age hurricanes and tropical storms. Nature 333, 243–45.Google Scholar
Irigoien, X., Huisman, J. & Harris, R. P. 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–67.CrossRefGoogle ScholarPubMed
Jeppsson, L. & Calner, M. 2003. The Silurian Mulde event and a scenario for secondo-secundo events. Transactions of the Royal Society of Edinburgh: Earth Sciences 93, 135–54.CrossRefGoogle Scholar
Kaminskas, D., Michelevičius, D. & Blažauskas, N. 2015. New evidence of an early Pridoli barrier reef in the southern part of the Baltic Silurian basin based on three-dimensional seismic survey, Lithuania. Estonian Journal of Earth Sciences 64, 4755.CrossRefGoogle Scholar
Kiipli, T., Radzevičius, S., Kallaste, T., Motuza, V., Jeppsson, L. & Wickstrom, L. M. 2008. Wenlock bentonites from Lithuania and correlation with bentonites from sections in Estonia, Sweden, and Norway. GFF 130, 203–10.CrossRefGoogle Scholar
Koren’, T. N. & Suyarkova, A. A. 1994. Monograptus deubeli and praedeubeli (Wenlock, Silurian) in the Asian part of the former Soviet Union. Alcheringa 18, 85101.CrossRefGoogle Scholar
Koren’, T. N. & Suyarkova, A. A. 2007. Silurian graptolite biostratigraphy of the Kaliningrad district. Northwestern Russia. Acta Palaeontologica Sinica 46, 232–36.Google Scholar
Koren’, T. N. & Urbanek, A. 1994. Adaptive radiation of monograptids after the Late Wenlock crisis. Acta Palaeontologica Polonica 39, 137–67.Google Scholar
Kozłowski, R. 1948. Les graptolites et quelques nouveaux groupes d'animeaux du Tremadoc de la Pologne. Palaeontologia Polonica 3, 1235.Google Scholar
Kraft, P. 1926. Ontogenische entwicklung und biologie von Diplograptus und Monograptus. Palaeontologische Zeitschrift 7, 207–49.CrossRefGoogle Scholar
Lenz, A. C. & Kozłowska-Dawidziuk, A. 1998. Sicular annuli and thickened interthecal septa in Silurian graptolites: new information. In Gutierrez-Marco, J. C. & Rabano, I. (eds.) Proceedings 6th international graptolite conference (GWG-IPA) & 1998 field meeting, IUGS subcommission on Silurian stratigraphy. Temas Geologico-Mineros ITGE 23, 212–27. Madrid: Instituto Tecnológico Geominero de España.Google Scholar
Lenz, A. C. & Melchin, M. J. 2008. Convergent evolution of two Silurian graptolites. Acta Palaeontologica Polonica 53, 449–60.CrossRefGoogle Scholar
Lenz, A. C., Noble, P. J., Masiak, M., Poulson, S. R. & Kozłowska, A. 2006. The lundgreni extinction event: integration of paleontological and geochemical data from Arctic Canada. GFF 128, 153–58.CrossRefGoogle Scholar
Lugo-Fernández, A. & Gravois, M. 2010. Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico. Continental Shelf Research 30, 1226–40.Google Scholar
Maletz, J., Suarez Soruco, R. & Egenhoff, S. O. 2003. Silurian (Wenlock-Ludlow) graptolites from Bolivia. Palaeontology 45, 327–41.CrossRefGoogle Scholar
Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D. & Musteikis, P. 2005. The Wenlock-Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geological Quarterly 49, 223–34.Google Scholar
Mathis, J. T., Pickart, R. S., Byrne, R. H., McNeil, C. L., Moore, G. W. K., Juranek, L. W., Liu, X., Ma, J., Easley, R. A., Elliot, M. M., Cross, J. N., Reisdorph, S. C., Bahr, F., Morison, J., Lichendorf, T. & Feely, R. A. 2012. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation sites. Geophysical Research Letters 39, L07606.CrossRefGoogle Scholar
Nestor, H., Einasto, R., Nestor, V., Märss, T. & Viira, V. 2001. Description of the type section, cyclicity, and correlation of the Riksu formation (Wenlock, Estonia). Proceedings of the Estonian Academy of Sciences, Geology 50, 149–73.Google Scholar
Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F. & van Kleunen, M. 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–92.CrossRefGoogle Scholar
Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. 2005. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–46.CrossRefGoogle Scholar
Pelletier, F., Réale, D., Coltman, D. W. & Fest-Bianchet, M. 2007. Selection on heritable seasonal phenotypic plasticity of body mass. Evolution 61, 1969–79.CrossRefGoogle ScholarPubMed
Pickart, R. S., Schulze, L. M., Moore, G. W. K., Charette, M. A., Arrigo, K. R., van Dijken, G. & Danielson, S. L. 2013. Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea. Deep-Sea Research I 79, 106–21.CrossRefGoogle Scholar
Prell, W. L. & Kutzbach, J. E. 1987. Monsoon variability over the past 150,000 years. Journal of Geophysical Research 92, 8411–25.CrossRefGoogle Scholar
Radzevičius, S. 2006. Late Wenlock biostratigraphy and the Pristiograptus virbalensis group (Graptolithina) in Lithuania and the holy cross mountains. Geological Quarterly 50, 333–34.Google Scholar
Radzevičius, S., Raczynski, P., Užomeckas, M., Norkus, A. & Spiridonov, A. 2019. Graptolite turnover and δ13Corg excursion in the upper Wenlock shales (Silurian) of the Holy Cross Mountains (Poland). Geologica Carpathica 70, 209–21.CrossRefGoogle Scholar
Radzevičius, S., Spiridonov, A. & Brazauskas, A. 2014. Integrated middle–upper Homerian (Silurian) stratigraphy of the Viduklė-61 well, Lithuania. GFF 136, 218–22.CrossRefGoogle Scholar
Radzevičius, S., Tumakovaitė, B. & Spiridonov, A. 2017. Upper Homerian (Silurian) high-resolution correlation using cyclostratigraphy: an example from western Lithuania. Acta Geologica Polonica 67, 307–22.CrossRefGoogle Scholar
Rickards, R. B., Packham, G. H., Wright, A. J. & Williamson, P. L. 1995. The Wenlock and Ludlow graptolite faunas and biostratigraphy of the Quarry Creek region, New South Wales. Association of Australasian Palaeontologists, Memoir 17, 168.Google Scholar
Rickards, R. B. & Wright, A. J. 1999. Evolution of the Ludlow (Silurian) graptolite genus Bohemograptus Přibyl 1936. Proceedings of the Yorkshire Geological Society 52, 313–20.CrossRefGoogle Scholar
Rickards, R. B. & Wright, A. J. 2003. The Pristiograptus dubius (Suess, 1851) species group and iterative evolution in the Mid- and Late Silurian. Scottish Journal of Geology 39, 6169.CrossRefGoogle Scholar
Rigby, S. & Dilly, P. N. 1993. Growth rates of pterobranchs and the lifespan of graptolites. Paleobiology 19, 459–75.CrossRefGoogle Scholar
Rinkevičiutė, S., Stankevič, R., Radzevičius, S., Meidla, T., Garbaras, A. & Spiridonov, A. 2021. Dynamics of ostracod communities through the Mulde/lundgreni event: contrasting patterns of species richness and paleocommunity compositional change. Journal of the Geological Society. doi: 10.1144/jgs2021-039Google Scholar
Roman, M. R., Adolf, J. E., Bichy, J., Boicourt, W. C., Harding, L. W. Jr., Houde, E. D., Jung, S., Kimmel, D. G., Millwe, W. D. & Zhang, X. 2005. Chesapeake Bay plankton and fish abundance enhanced by Hurricane Isabel. Eos 86, 261–68.CrossRefGoogle Scholar
Scheiner, S. M. & Lyman, R. F. 1989. The genetics of phenotypic plasticity I. Heritability. Journal of Evolutionary Biology 2, 95107.CrossRefGoogle Scholar
Sharmila, S., Joseph, S., Sahai, A. K., Abhilash, S. & Chattopadhyay, R. 2015. Future projection of an Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Global and Planetary Change 124, 6278.CrossRefGoogle Scholar
Spiridonov, A. 2017. Recurrence and cross-recurrence plots reveal the onset of the Mulde Event (Silurian) in the abundance data of conodonts. The Journal of Geology 125, 381–98.CrossRefGoogle Scholar
Spiridonov, A., Stankevič, R., Gečas, T., Brazauskas, A., Kaminskas, D., Musteikis, P., Kaveckas, T., Meidla, T., Bičkauskas, G., Ainsaar, L. & Radzevičius, S. 2020. Ultra-high resolution multivariate record and multiscale causal analysis of Pridoli (late Silurian): implications for global stratigraphy, turnover events, and climate-biota interactions. Gondwana Research 86, 222–49.CrossRefGoogle Scholar
Spiridonov, A., Stankevič, R., Gečas, T., Šilinskas, T., Brazauskas, A., Meidla, T., Ainsaar, L., Musteikis, P. & Radzevičius, S. 2017a. Integrated record of Ludlow (Upper Silurian) oceanic geobioevents–coordination of changes in conodont, and brachiopod faunas, and stable isotopes. Gondwana Research 51, 272–88.CrossRefGoogle Scholar
Spiridonov, A., Venckutė-Aleksienė, A. & Radzevičius, S. 2017b. Cyst size trends in the genus Leiosphaeridia across the Mulde (lower Silurian) biogeochemical event. Bulletin of Geosciences 92, 391404.CrossRefGoogle Scholar
Steeman, T., Vandenbroucke, T. R. A., Williams, M., Verniers, J., Perrier, V., Siveter, D. J., Wilkinson, J., Zalasiewicz, J. & Emsbo, P. 2016. Chitinozoan stratigraphy of the Silurian Wenlock-Ludlow boundary succession of the Long Mountain, Powys, Wales. Geological Magazine 153, 95109.CrossRefGoogle Scholar
Štorch, P., Manda, Š & Loydell, D. K. 2014. The early Ludfordian leintwardinensis event and the Gorstian-Ludfordian boundary in Bohemia (Silurian, Czech Republic). Palaeontology 57, 1009–43.CrossRefGoogle Scholar
Tebaldi, C., Strauss, B. H. & Zervas, C. E. 2012. Modelling sea level rise impacts on storm surges along US coasts. Environmental Research Letters 7, 014032.CrossRefGoogle Scholar
Tiwari, R. K. & Rao, K. N. N. 2004. Signature of ENSO signal in the coral growth rate record of Arabian Sea and Indian monsoons. Pure and Applied Geophysics 161, 413–27.CrossRefGoogle Scholar
Torsvik, T. H. & Cocks, L. R. M. 2013. New global palaeogeographical reconstructions for the early Palaeozoic and their generation. In Harper, D. & Servais, T. (eds) Early Palaeozoic biogeography and palaeogeography, 524. London: Geological Society, Memoirs, 38.Google Scholar
Tudhope, A. W., Lea, D. W., Shimmield, G. B., Chilcott, C. P. & Head, S. 1996. Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from southern Oman. PALAIOS 11, 347–61.CrossRefGoogle Scholar
Underwood, C. J. 1993. The position of graptolites within lower Palaeozoic planktic ecosystems. Lethaia 26, 189202.CrossRefGoogle Scholar
Urbanek, A. 1958. Monograptidae from erratic boulders of Poland. Palaeontologica Polonica 9, 1–126.Google Scholar
Urbanek, A. 1963. On generation and regeneration of cladia in some Upper Silurian monograptids. Acta Palaeontologica Polonica 8, 135261.Google Scholar
Urbanek, A. 1970. Neocuculligraptinae n. subfam. (Graptolithina) – their evolutionary and stratigraphic bearing. Acta Palaeontologica Polonica 15, 163342.Google Scholar
Urbanek, A.. 1997. Late Ludfordian and early Pridoli monograptids from the Polish Lowland. Palaeontologia Polonica, 56, 87231.Google Scholar
Urbanek, A., Radzevičius, S., Kozłowska, A. & Teller, L. 2012. Phyletic evolution and iterative speciation in the persistent Pristiograptus dubius lineage. Acta Palaeontologica Polonica 57, 589611.CrossRefGoogle Scholar
Vallina, S. M., Follows, M. J., Dutkiewicz, S., Montoya, J. M., Cermeno, P. & Loreau, M. 2014. Global relationship between phytoplankton diversity and primary productivity in the ocean. Nature Communications 5, 4299.CrossRefGoogle Scholar
Venckutė-Aleksienė, A., Radzevičius, S. & Spiridonov, A. 2016. Dynamics of phytoplankton in relation to the upper Homerian (Lower Silurian) lundgreni event – an example from the Eastern Baltic Basin (Western Lithuania). Marine Micropaleontology 126, 3141.CrossRefGoogle Scholar
Walker, M. 1953. Development of Monograptus dubius and Monograptus chimaera. Geological Magazine 90, 362–73.CrossRefGoogle Scholar
Whittingham, M., Radzevičius, S. & Spiridonov, A. 2020. Moving towards a better understanding of iterative evolution: an example from the Late Silurian Monograptidae (Graptolithina) of the Baltic Basin. Palaeontology 63, 629–49.CrossRefGoogle Scholar
Yan, Q., Wei, T., Korty, R. L., Kossin, J. P., Zhang, Z. & Wang, H. 2016. Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. PNAS 113, 12963–67.CrossRefGoogle ScholarPubMed
Yeh, S., Kang, S., Kirtman, B. P., Kim, J., Kwon, M. & Kim, C. 2010. Decadal change in relationship between western North Pacific tropical cyclone frequency and the tropical Pacific SST. Meteorology and Atmospheric Physics 106, 179–89.CrossRefGoogle Scholar
Žigaitė, Ž, Joachimski, M. M., Lehnert, O. & Brazauskas, A. 2010. δ18O composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 242–47.CrossRefGoogle Scholar
Supplementary material: File

Whittingham et al. supplementary material

Appendix

Download Whittingham et al. supplementary material(File)
File 44.7 KB