Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T06:14:32.005Z Has data issue: false hasContentIssue false

Microfossil analyses and radiocarbon dating of depositional sequences related to Holocene sea-level change in the Forth valley, Scotland

Published online by Cambridge University Press:  03 November 2011

Marie Robinson
Affiliation:
Marie Robinson, Department of Geography and Geology, University of St Andrews, St Andrews Fife KY169ST

Abstract

Microfossil (pollen and diatom) evidence is presented from sites in the Forth valley, south-central Scotland, where alternating organic and estuarine minerogenic deposits record the influence of the changing Holocene sea level. Radiocarbon dating confirms the age of the Main and Low Buried Beaches, and of the Main Postglacial Transgression, in different parts of the Forth valley. Radiocarbon dates on shells from beds in the carse sediment and a Mesolithic shell midden near Grangemouth relate to the falling sea level in the 4th and 5th millennia BP. Sea-level curves are constructed for the western and eastern Forth valley.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, H. G. & Haworth, E. Y. 1981. A guide to the morphology of the diatom frustule with a key to the British freshwater genera. Freshwater Biological Assoc. Scientific Publication 44, 1112.Google Scholar
Barber, K. E. 1981. Peat stratigraphy and climatic change. A palaeoecological test of the theory of cyclic peat bog regeneration. Rotterdam: A. A. Balkema.Google Scholar
Becker, B., Kromer, B. & Trimborn, P. 1991. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. NATURE 353, 647–9.CrossRefGoogle Scholar
Bennett, K. D. & Birks, H. J. B. 1990. Postglacial history of alder (Alnus glutinosa (L.) Gaertn.) in the British Isles. J QUATERNARY SCI 5, 123–33.CrossRefGoogle Scholar
Birks, H. J. B. 1989. Holocene isochrone maps and patterns of tree-spreading in the British Isles. J BIOGEOGR 16, 503–40.CrossRefGoogle Scholar
Brooks, C. L. 1972. Pollen analysis and the Main Buried Beach in the western part of the Forth valley. TRANS INST BR GEOGR 55, 161–70.CrossRefGoogle Scholar
Brooks, C. L. 1976. Pollen analyses of Late- and Post-glacial deposits in the western Forth valley. Unpubl. Ph.D. thesis, Univ. of Edinburgh.Google Scholar
Brown, A. G. 1988. The palaeoecology of Alnus (alder) and the Postglacial history of floodplain vegetation. Pollen percentage and influx data from the West Midlands, United Kingdom. NEW PHYTOL 110, 425–36.Google Scholar
Browne, M. A. E., Graham, D. K. & Gregory, D. M. 1984. Quaternary deposits in the Grangemouth area, Scotland. B.G.S. Rep16(3), 114. London: HMSO.Google Scholar
Chambers, F. M., & Elliott, L. 1989. Spread and expansion of Alnus Mill, in the British Isles: timing, agencies and possible vectors. J BIOGEOGR 16, 541–50.Google Scholar
Cleve-Euler, A. 1951-1955. Die Diatomeen von Schweden und Finnland. K SVEN VETENSKAPSAKAD HANDLINGAR, Fourth Series, Parts 1-5.Google Scholar
Cullingford, R. A., Caseldine, C. J. & Gotts, P. E. 1980. Early Flandrian land and sea-level changes in Lower Strathearn. NATURE 284, 159–61.CrossRefGoogle Scholar
Cullingford, R. A., Caseldine, C. J. & Gotts, P. E. 1989. Evidence of early Flandrian tidal surges in Lower Strathearn, Scotland. J QUATERNARY SCI 4, 5160.Google Scholar
Cullingford, R. A., Smith, D. E. & Firth, C. R. 1991. The altitude and age of the Main Postglacial Shoreline in eastern Scotland. QUATERNARY INT 9, 3952.Google Scholar
Dawson, A. G., Long, D. & Smith, D. E. 1988. The Storegga slides: evidence from eastern Scotland for a possible tsunami. MAR GEOL 82, 271–6.CrossRefGoogle Scholar
Durno, S. E. 1956. Pollen analysis of peat deposits in Scotland. SCOTT GEOGR MAG 72, 177–87.Google Scholar
Durno, S. E. 1958. The dating of the Forth valley carse clay: a note. SCOTT GEOGR MAG 74, 47–8.Google Scholar
Edwards, K. J. 1981. The separation of Corylus and Myrica pollen in modern and fossil samples. POLLEN ET SPORES 23, 205–18.Google Scholar
Erdtman, G. 1928. Studies in the Postarctic history of the forests of N. W. Europe. GEOL FOREN STOCKHOLM FORH 50, 123–92.CrossRefGoogle Scholar
Faegri, K. & Iversen, J. 1989. In Faegri, K., Kaland, P. E. & Kryzwinski, K. (eds) Textbook of pollen analysis. 4th edn. Chichester: J. Wiley & Sons.Google Scholar
Foord, A. H. & Kidson, R. 1890. Notes on the flora and fauna of Pleistocene beds of the carse of Stirling. TRANS STIRLING FIELD CLUB NAT HIST ARCHAEOL SOC 1889-1890, 91–7.Google Scholar
Godwin, H. 1975. The History of the British Flora, a factual basis for phytogeography. 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Godwin, H. & Willis, E. H. 1961. Cambridge University Natural Radiocarbon measurements III. RADIOCARBON 3, 6076.CrossRefGoogle Scholar
Godwin, H. & Willis, E. H. 1962. Cambridge University Natural Radiocarbon measurements V. RADIOCARBON 4, 5770.Google Scholar
Gray, J. M. & Brooks, C. L. 1972. The Loch Lomond Readvance moraines of Mull and Menteith. SCOTT J GEOL 8, 95103.Google Scholar
Haggart, B. A. 1986. Relative sea-level change in the Beauly Firth, Scotland. BOREAS 15, 191207.Google Scholar
Haggart, B. A. 1988. The stratigraphy, depositional environment and dating of a possible tidal surge deposit in the Beauly Firth area, northeast Scotland. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 66, 215–30.Google Scholar
Harkness, D. D. 1983. The extent of natural C-14 deficiency in the coastal environment of the United Kingdom. PROC FIRST INT SYMP ON C-14 AND ARCHAEOL, PACT, 8, 351–64.Google Scholar
Hartley, B. 1986. A check-list of the freshwater, brackish and marine diatoms of the British Isles and adjoining coastal waters. J MAR BIOL ASSOC UK 66, 531610.CrossRefGoogle Scholar
Haslam, S. M. 1972. Biological Flora of the British Isles. List. Br. Vase. Pl.(1958) No. 665-1. Phragmites communis Trin. J ECOL 60, 585610.CrossRefGoogle Scholar
Haworth, E. Y. 1976. Two Late-glacial (Late Devensian) diatom assemblage profiles from northern Scotland. NEW PHYTOL 77, 227–56.Google Scholar
Hendey, N. I. 1964. An introductory account of the smaller algae of British coastal waters. Pt. V. Bacillariophyceae (Diatoms). London: H.M.S.O.Google Scholar
Huntley, B. & Birks, H. J. B. 1983. An atlas of past and present pollen maps for Europe: 0-13000 years ago. Cambridge: Cambridge University Press.Google Scholar
Hustedt, F. 1930. Die Susswasser-flora Mitteleuropas. 10. Bacillariophyta (Diatomeae). Jena: Verlag von Gustav Fischer.Google Scholar
Hustedt, F. 1930-1966. Die Kieselalgen Deutschlands, Osterreichs und der Schweiz. In Rabenhorst, L. (ed.) Kryptogamen-Flora 7. Reprint 1977. Koenigstein: Otto Koeltz Science Publishers.Google Scholar
Hustedt, F. 1939. Die Diatomeenflora des Kustengebeites der Nordsee vom Dollart bis zur Elbemundung. ABH NATURWISS VER BREMEN 31, 572677.Google Scholar
Kaland, P. E. 1984. Holocene shore displacement and shorelines in Hordaland, western Norway. BOREAS 13, 203–42.Google Scholar
Kemp, D. D. 1971. The stratigraphy and sub-carse morphology of an area on the northern side of the River Forth between the Lake of Menteith and Kincardine-on-Forth. Unpubl. Ph.D. thesis, Univ. of Edinburgh.Google Scholar
Kjemperud, A. 1981. Diatom changes in sediments of basins possessing marine/lacustrine transitions in Frosta, Nord-Trondelag, Norway. BOREAS 10, 2738.Google Scholar
Kolbe, R. W. 1932. Grundlinien einer allgemeinen Okologie der Diatomeen. ERGEB BIOL VIII, 221366.Google Scholar
Long, D., Smith, D. E. & Dawson, A. G. 1989. A Holocene tsunami deposit in eastern Scotland. J QUATERNARY SCI 4, 61–6.Google Scholar
Lund, J. W. G. 1945. Observations on soil algae. Pt. I. The ecology, size and taxonomy of British soil diatoms. NEW PHYTOL 44, 196219.Google Scholar
Lund, J. W. G. 1946. Pt. II. NEW PHYTOL 45, 56110.Google Scholar
MacKie, E. W. 1972. Radiocarbon dates for two Mesolithic shell heaps and a Neolithic axe factory in Scotland. PROC PREHIST SOC 38, 412–16.CrossRefGoogle Scholar
McCall, D. 1933. Diatoms (recent and fossil) of the Tay district. J LINN SOC LONDON (BOT) 49, 219308.CrossRefGoogle Scholar
McLusky, D. S. 1971. Ecology of estuaries. London: Heineman.Google Scholar
Milne-Home, D. 1871. The estuary of the Forth and adjoining districts viewed geologically. Edinburgh: Edmonston and Douglas.Google Scholar
Morrison, J., Smith, D. E., Cullingford, R. A. & Jones, R. L. 1981. The culmination of the Main Postglacial Transgression in the Firth of Tay area, Scotland. PROC GEOL ASSOC 92, 197209.Google Scholar
Newey, W. W. 1965. Post-glacial vegetational and climatic changes in part of south-east Scotland as indicated by pollen-analysis and stratigraphy of some of its peat and lacustrine deposits. Unpubl. Ph.D. thesis, Univ. of Edinburgh.Google Scholar
Newey, W. W. 1966. Pollen analyses of sub-Carse peats of the Forth valley. TRANS INST BR GEOGR 39, 53–9.Google Scholar
Perkins, E. J. 1974. The Biology of estuaries and coastal waters. London: Academic Press.Google Scholar
Ranwell, D. S., Bird, E. C. F., Hubbard, J. C. E. & Stebbings, R. E. 1964. Spartina salt marshes in southern England. J ECOL 52, 627–41.Google Scholar
Rawlence, D. J. 1988. The post-glacial diatom history of Splan Lake, New Brunswick. J PALEOLIMNOL 1, 5160.Google Scholar
Riznyk, R. Z. 1973. Interstitial diatoms from two tidal flats in Yaquina estuary, Oregon U.S.A. BOT MAR 16, 113–38.Google Scholar
Robinson, M. 1982. Diatom analysis of early Flandrian lagoon sediments from East Lothian, Scotland. J. BIOGEOGR 9, 207–21.CrossRefGoogle Scholar
Round, F. E. 1960. The diatom flora of a salt marsh on the river Dee. NEW PHYTOL 59, 332–48.Google Scholar
Simpson, J. B. 1933. The late-glacial readvance moraines of the Highland border west of the River Tay. TRANS R SOC EDINBURGH 57, 633–45.Google Scholar
Sissons, J. B. 1962. A re-interpretation of the literature on Late-glacial shorelines in Scotland with particular reference to the Forth area. TRANS EDINBURGH GEOL SOC 19, 8399.Google Scholar
Sissons, J. B. 1966. Relative sea-level changes between 10300 and 8300 B.P. in part of the Carse of Stirling. TRANS INST BR GEOGR 39, 1929.Google Scholar
Sissons, J. B. 1967. Glacial stages and radiocarbon dates. SCOTT J GEOL 3, 375381.Google Scholar
Sissons, J. B. 1969. Drift stratigraphy and buried morphological features in the Grangemouth-Falkirk–Airth area, central Scotland. TRANS INST BR GEOGR 48, 1950.Google Scholar
Sissons, J. B. 1971. Geomorphology and foundation conditions around Grangemouth. Q J ENG GEOL 3, 183–91.Google Scholar
Sissons, J. B. 1972. Dislocation and non-uniform uplift of raised shorelines in the western part of the Forth valley. TRANS INST BR GEOGR 55, 145–57.Google Scholar
Sissons, J. B. 1976. Scotland. London: Methuen & Co. Ltd.Google Scholar
Sissons, J. B. 1983. Shorelines and isostasy in Scotland. In Smith, D. E. & Dawson, A. G. (eds), Shorelines and isostasy. INST BR GEOGR SPEC PUBL 16, 209–25. London: Academic Press.Google Scholar
Sissons, J. B. & Brooks, C. L. 1971. Dating of early Post-glacial land and sea level changes in the western Forth valley. NAT PHYS SCI 234, 124–27.CrossRefGoogle Scholar
Sissons, J. B. & Smith, D. E. 1965. Peat bogs in a Post-glacial sea and a buried raised beach in the western part of the Carse of Stirling. SCOTT J GEOL 1, 247–55.Google Scholar
Sissons, J. B., Smith, D. E. & Cullingford, R. A. 1966. Late-glacial and Post-glacial shorelines in south-east Scotland. TRANS INST BR GEOGR 39, 918.Google Scholar
Smith, D. E. 1968. Post-glacial displaced shorelines in the surface of the carse clay on the north bank of the river Forth, in Scotland. Z GEOMORPHOL 12, 388408.Google Scholar
Smith, D. E., Cullingford, R. A. & Haggart, B. A. 1985. A major coastal flood during the Holocene in Eastern Scotland. EISZEITALTER GGW 35, 109–18.Google Scholar
Stabell, B. 1985. The development and succession of taxa within the diatom genus Fragilaria Lyngbye as a response to basin isolation from the sea. BOREAS 14, 273–86.Google Scholar
Stevenson, R. B. K. 1946. A shell-heap at Polmonthill, Falkirk. PROC SOC ANTIQ SCOTLAND 80, 135–9.Google Scholar
Sutherland, D. G. 1986. A review of Scottish marine shell radiocarbon dates, their standardization and interpretation. SCOTT J GEOL 22, 145–64.Google Scholar
Svedhage, K. 1985. Stratigraphic indications of a Pleistocene/Holocene transgression in Gota Alv river valley, BOREAS 14, 8795.Google Scholar
Tebble, N. 1966. British bivalve shells. A handbook for identification, 2nd edn. Edinburgh: H.M.S.O.Google Scholar
Turner, J. 1965. A contribution to the history of forest clearance. PROC R SOC LONDON SER B 161, 343–54.Google Scholar
Van der Werff, A. & Huls, H. 1957-1974. Diatomeënflora van Nederland. 10 parts. Den Haag: Abcoude.Google Scholar
Walkley, A. & Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. SOIL SCI 37, 2938.Google Scholar
Yonge, C. M. 1960. Oysters. The New Naturalist Series. London: Collins.Google Scholar
Yonge, C. M. 1966. The sea shore. The New Naturalist Series. London: Collins.Google Scholar