Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T09:20:03.419Z Has data issue: false hasContentIssue false

Ontogeny of the trilobite Parabolina spinulosa (Wahlenberg, 1818) from the upper Cambrian Alum Shales of Sweden

Published online by Cambridge University Press:  03 November 2011

Euan N. K. Clarkson
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JW, UK
Cecilia M. Taylor
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JW, UK
Per Ahlberg
Affiliation:
Department of Geology, University of Lund, Sölvegatan 13, S–223 62 LUND, Sweden

Abstract

The ontogeny of Parabolina spinulosa is described on the basis of material from Andrarum (Skåne) and Jämtland in Sweden. Protaspides are rare, and indifferently preserved, but well-preserved isolated tagmata and complete specimens from the early meraspid stages onwards were available for study. Whereas the ontogeny is broadly similar to that of the earlier Olenus wahlenbergi, there are subtle differences, notably in a greater spinosity from the earlier stages and a gradual, rather than a sudden, change of surface sculpture in the early holaspid. P. spinulosa at all stages of growth is much more variable than is Olenus. Meraspides have larger articulating halfrings anteriorly and the first thoracic segments are of greater sagittal length than in the adult; these were adaptations which enabled Parabolina to undergo cylindrical enrollment from an early stage.

Parabolina is considered to have arisen from the earlier genus Olenus, and on the basis of comparative ontogeny many, though not all, features of Parabolina appear to be of paedomorphic origin. These include the reduction of the preglabellar field, retention of the visual surface, position of the eyes set close to the glabella, retention of a conterminant hypostome, yoking of the librigenae, spinosity of the thorax and pygidium, more numerous glabellar furrows and reduction in number of thoracic segments. Olenus attenuatus has several features intermediate between those of earlier Olenus species and Parabolina, and the origin of the latter genus is best considered in terms of a mosaic paedomorphocline.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlgren, J. & Ahlberg, P. 1996. Olenus henningsmoeni, a new trilobite from the Upper Cambrian Olenus Zone in Västergötland, Sweden. GFF 118, 73–7.Google Scholar
Bergström, J. 1973. Organisation, life, and systematics of trilobites. Fossils & Strata 2, 169.Google Scholar
Clarkson, E. N. K. 1973. Morphology and evolution of the eye in Upper Cambrian Olenidae (Trilobita). Palaeontology 16, 735–63.Google Scholar
Clarkson, E. N. K. & Henry, J-L. 1973. Structures coaptatives et enroulement chez quelques Trilobites ordoviciens et siluriens. Lethaia 6, 105–32.Google Scholar
Clarkson, E. N. K. & Taylor, C. M. 1995a. Ontogeny of the trilobite Olenus wahlenbergi Westergård, 1922 from the upper Cambrian Alum Shales of Andrarum, Skåne, Sweden. Trans R Soc Edinburgh: Earth Sci 86, 1334.Google Scholar
Clarkson, E. N. K. & Taylor, C. M. 1995b. The lost world of the olenid trilobites. Geology Today 11, 147–54.Google Scholar
Clarkson, E. N. K. & Zhang, X. G. 1991. Ontogeny of the Carboniferous trilobite Paladin eichwaldi shunnerensis (King 1914). Trans R Soc Edinburgh: Earth Sci 82, 277–95.Google Scholar
Fortey, R. A. 1974. The Ordovician trilobites of Spitzbergen. 1. Olenidae. Norsk Polarinst Skr 160, 1129.Google Scholar
Fortey, R. A. 1990. Ontogeny, hypostome attachment and trilobite classification. Palaeontology 33, 529–76.Google Scholar
Henningsmoen, G. 1957. The trilobite family Olenidae. Skr Nor Vidensk Akad Oslo 1. Mat-Naturv Kl 1, 1303.Google Scholar
Henningsmoen, G. 1975. Moulting in trilobites. Fossils & Strata 4, 197200.Google Scholar
Henry, J-L. & Clarkson, E. N. K. 1975. Enrollment and coaptations in some species of the Ordovician trilobite genus Placoparia. Fossils & Strata 4, 8795.Google Scholar
Hoffmann, A. & Reif, W. E. 1994. Rudolf Kaufmann's work on iterative evolution in the Upper Cambrian trilobite genus Olenus: A reappraisal. Paläont Z 68, 7187.Google Scholar
Hu, Chung-hung. 1971. Ontogeny and sexual dimorphism of Lower Palaeozoic trilobites. Paleontogr Am 7, 31155.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the late Cambrian trilobite Dikelocephalus. Smithsonian Contrib Paleobiol 79, 189.Google Scholar
Karis, L. & Larsson, K. 1982. Jämtland road-log. In Bruton, D. L. & Williams, S. H. (eds) Field Excursion Guide; IV International Symposium on the Ordovician System, 64–76. Paleont Contrib Univ Oslo 279, 1217.Google Scholar
Kaufmann, R. 1933. Variationsstatistisches Untersuchungen uber die ‘Artabwandlung’ und ‘Artumbildung’ an der Oberkambrischen Trilobitengattung Olenus Dalm. Abh Geol Paleont Inst Univ Greifswald 10, 154.Google Scholar
Lake, P. 1908. British Cambrian trilobites Palaeontogr Soc (Monogr), part 3 (1908), 4964.Google Scholar
Lindström, M. & Sturkell, E. F. F. 1992. Geology of the Early Palaeozoic Lockne impact structure, Central Sweden. Tectonophyscs 216, 169–85.Google Scholar
McKinney, M. L. & McNamara, K. J. 1991. Heterochrony; the evolution of ontogeny. New York: Plenum.CrossRefGoogle Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8, 130–42.Google Scholar
McNamara, K. J. 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biol Rev 61, 121–56.Google Scholar
McNamara, K. J. & Rudkin, D. 1984. Techniques of trilobite exuviation. Lethaia 17, 153–73.Google Scholar
Nielsen, A. T. 1996. Iltmangel, sort slam og trilobiter—en kambrisk cocktail. Varv 1, 139.Google Scholar
Öpik, A. A. 1963. Early Upper Cambrian fossils from Queensland. Bur Miner Resour Aust Geol Geophys Bull 64, 1133.Google Scholar
Reyment, R. 1976. Biographical note of Goran (Georg) Wahlenberg. Pages 1–11 in De Rebus in Palaeontologico Museo Upsaliensi Collectis; Illustrated catalogue of the type collections of the palaeontological Museum of the University of Uppsala 3. Uppsala: Palaeontological Institute.Google Scholar
Rushton, A. W. A. 1983. Trilobites from the upper Cambrian Olenus Zone in central England. In Briggs, D. E. G. & Lane, P. D. (eds) Trilobites and other early arthropods: papers in honour of Professor H. B. Whittington. F. R. S. Spec Pap Palaeont 30, 107–39.Google Scholar
Speyer, S. & Brett, C. G. 1985. Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia 18, 85103.CrossRefGoogle Scholar
Størmer, L. 1942. Studies on trilobite morphology, Part II. The larval development, the segmentation and the sutures, and their bearing on trilobite classification. Nor Geol Tidsskr 21, 49164.Google Scholar
Wahlenberg, G. 1818. Petrifacta telluris Svecanae. Acta Societas Regiae Scientiarum 8, (1821), 1116.Google Scholar
Westergård, A. H. 1922. Sveriges Olenidskiffer. Sver Geol Unders Ser C 18, 1215.Google Scholar
Westergård, A. H. 1944. Borrningar genom Skånes Alunskiffer 1941–42. Sver Geol Unders Ser C 459, 145.Google Scholar
Westergård, A. H. 1947. Supplementary notes on the Upper Cambrian trilobites of Sweden. Sver Geol Unders Ser C 489, 134.Google Scholar
Whitworth, P. H. 1970. Ontogeny of the Upper Cambrian trilobite Leptoplastus crassicornis (Westergaard) from Sweden. Palaeontology 13, 100–11.Google Scholar
Whittington, H. B. 1996. Spheroidal enrolment and thoracic characters in Beltella and other olenid trilobites. Palaeontology 39, 377–88.Google Scholar
Wilmot, N. V. 1990. Cuticular structure of the agnostine trilobite Homagnostus obesus Lethaia 23, 8792.Google Scholar