Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T06:01:20.211Z Has data issue: false hasContentIssue false

Radiocarbon ages and the full-glacial to Holocene transition in seas adjacent to Scotland and southern Scandinavia: a review

Published online by Cambridge University Press:  03 November 2011

J. D. Peacock
Affiliation:
Department of Civil Engineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.
D. D. Harkness
Affiliation:
NERC Radiocarbon Laboratory, Scottish UniversitiesResearch and Reactor Centre, East Kilbride, Glasgow G75 0QU, Scotland.

Abstract

Water of southerly origin replaced polar water very rapidly on the coast of NW Europe and an interstadial marine circulation with a weak North Atlantic Drift was fully established off both west Scotland and southern Scandinavia by roughly 12 800BP. A ‘warm’ interval detected in marine strata on the western Scottish coast at the beginning of the Windermere (Bølling plus Allerød) Interstadial lasted from this date to perhaps 12 400 BP and another towards its close from about 11 250 to shortly after 11 000 BP. During the Younger Dryas Stadial polar water returned by about 10 850 BP and was present until about 10 200–10 100 BP. The changes in water circulation at the beginning and end of the Windermere Interstadial and at the end of the Younger Dryas seem to have taken place within the limits of radiocarbon dating, perhaps within a few decades. Warming at the beginning of the Holocene Interglacial may have taken place in two phases, during the first of which, from about 10 100 BP to possibly 9600 BP, marine temperatures seem to have been lower than at present, more especially on the east coast of Scotland and in southern Sweden. Full marine interglacial circulation may not have been established until 9500 BP. Water depth in the Faeroe–Shetland Channel may have been a major factor in controlling sea and air temperature from Scotland northwards during the Windermere Interstadial and Holocene Interglacial and, by implication, during earlier interglacials and interstadials.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, T. C., Scott, E. M., Harkness, D. D.Baxter, M. S. & Cook, G. T.Report on Stage 3 of the International Collaborative Study. RADIOCARBON 32 (in press).Google Scholar
Ammann, B. and Lotter, A. F. 1989. Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. BOREAS 18, 109–26.CrossRefGoogle Scholar
Anderson, B. G. 1968. Glacial geology of western Troms, north Norway. NOR GEOL UNDERS No. 256.Google Scholar
Anderson, B. G., Bøen, F.Nydal, R, Rasmussen, A. & Vallevik, P. N. 1981. Radiocarbon dates of marginal moraines in Nordland, North Norway. GEOGR ANN 63A, 155–60.CrossRefGoogle Scholar
Andrée, M., Oeschger, H., Siegenthaler, U., Riesen, T., Moell, M., Ammann, B. & Tobolski, K. 1986. 14C dating of plant macrofossils in lake sediment. RADIOCARBON 28, 411–16.CrossRefGoogle Scholar
Atkinson, T. C., Briffa, K. R. & Coope, G. R. 1987. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. NATURE 325, 587–92.CrossRefGoogle Scholar
Bergsten, H. & Dennegård, B. 1988. Late Weichselian-Holocene foraminiferal stratigraphy and palaeohydrological changes in the Gothenburg area, southwestern Sweden. BOREAS 17, 229–42.CrossRefGoogle Scholar
Bishop, W. W. & Dickson, J. H. 1970. Radiocarbon dates related to the Scottish Late-glacial Sea in the Firth of Clyde. NATURE 227, 480–2.CrossRefGoogle Scholar
Björck, S. & Möller, P. 1987. Late Weichselian environmental history in southeastern Sweden during the deglaciation of the Scandinavian ice sheet. QUATERNARY RES. 28, 137.CrossRefGoogle Scholar
Bjørklund, K. R., Dale, B., Erlenkeuser, H., Henningsmoen, K. E., Høeg, H. I., Johnson, K., Manum, S. B., Mikkelsen, N., Nagy, J., Pederstad, K., Qvale, G., Rosenqvist, I. T., Salbu, B., Schoenharting, G., Stabell, B., Thiede, J., Throndsen, I., Wassmann, P. & Werner, F. 1985. Evolution of the Upper Quaternary depositional environment in the Skagerrak: a synthesis. NOR GEOL TIDSSKR 65, 139–49.Google Scholar
Broecker, W. S., Audree, M., Bonani, G., Mix, A., Klas, M., Wolfi, W. & Oescher, H. 1988. Comparison between the radiocarbon ages of coexisting planktonic foraminifera. PALEOCEANOGRAPHY 3, 647–58.CrossRefGoogle Scholar
Browne, M. A. E., Harkness, D. D., Peacock, J. D. & Ward, R. 1977. The date of deglaciation of the Paisley-Renfrew area. SCOTT J GEOL 13, 301303.CrossRefGoogle Scholar
Browne, M. A. E., McMillan, A. A. & Graham, D. K. 1983. A late-Devensian marine and non-marine sequence near Dumbarton, Strathclyde. SCOTT J GEOL 19, 229–34.CrossRefGoogle Scholar
Browne, M. A. E., Graham, D. K. & Gregory, D. M. 1984. Quaternary estuarine deposits in the Grangemouth area, Scotland. REP BR GEOL SURV 16(3), 114.Google Scholar
Cameron, T. D. J., Stoker, M. S. & Long, D. 1987. The history of Quaternary sedimentation in the UK sector of the North Sea Basin. J GEOL SOC LOND 144, 4358.CrossRefGoogle Scholar
Cato, I., Fréden, C. & Olausson, E. 1982. Summary of the investigation. In Olausson, E. (ed.). The Pleistocene/Holocene boundary in south-western Sweden. SVER GEOL UNDERS 76(7), 253–68.Google Scholar
Coope, G. R. 1977. Fossil coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (Last) cold stage. PHIL TRANS R SOC B280, 313–40.Google Scholar
Feyling-Hanssen, R. W. 1955. Stratigraphy of the marine Late Pleistocene of Billefjorden, Vestspitsbergen. SKR NOR POLARINST 107, 1186.Google Scholar
Feyling-Hanssen, R. W. 1972. The foraminifer Elphidium excavatum and its variant forms. MICROPALEONTOL 18, 337–54.CrossRefGoogle Scholar
Feyling-Hanssen, R. W. 1982. Molluscs and other megafossils. In Olausson, E. (ed.) The Pleistocene/Holocene boundary in south-western Sweden. SVER GEOL UNDERS 76(7), 120–36.Google Scholar
Fréden, C. 1983. Beskrivning til Jordartskarten Kungsbacka NO, SVER GEOL UNDERS Serie Ae, No. 34, 1125.Google Scholar
Fréden, C. 1988. Marine life and deglaciation chronology of the Vänern basin, southwestern Sweden. SVER GEOL UNDERS Ser. Ca, No. 71.Google Scholar
Graham, D. K. & Gregory, D. M. 1981. A revision of C. F. Davidson's arctic fauna from Inchcoonans Claypit, Errol, held by the Museum and Art Gallery, Perth. SCOTT J GEOL 17, 215–22.CrossRefGoogle Scholar
Graham, D. K., Harland, R., Gregory, D. M., Long, D. & Morton, C. The palaeontology and chronostratigraphy of BGS Borehole No, 78/4, North Minch, Scotland. SCOTT J GEOL (in press).Google Scholar
Harkness, D. D. 1981. Scottish Universities Research and Reactor Centre Radiocarbon Measurements IV. RADIOCARBON 23, 252304.CrossRefGoogle Scholar
Harkness, D. D. 1983. The extent of natural 14C deficiency in the coastal environment of the United Kingdom. PROC FIRST INT SYMP ON C-14 AND ARCHAEOL, PACT 8, 351–64.Google Scholar
Harkness, D. D. and Wilson, H. W. 1979. Scottish Univerisites Research and Reactor Centre Radiocarbon Measurements III. RADIOCARBON 21, 203–56.CrossRefGoogle Scholar
Haynes, J. R. 1981. Foraminifera. London: Macmillan.CrossRefGoogle Scholar
Hedges, R. E. M., Housley, R. A., Law, I. A., Perry, C. & Hendy, E. 1988. Radiocarbon dates from the Oxford AMS System: Archaeometry Datelist 8. ARCHAEOMETRY 30, 291305.CrossRefGoogle Scholar
Hedges, R. E. M., Housley, R. A., Law, I. A. & Bronk, C. R. 1989. Radiocarbon dates from the Oxford AMS System: Archaeometry Datelist 9. ARCHEOMETRY 31, 207–34.CrossRefGoogle Scholar
Høisaeter, T. 1986. An annotated check-list of marine molluscs of the Norwegian coast and adjacent waters. SARSIA 71, 73145.CrossRefGoogle Scholar
Jansen, E. & Bjørklund, K. R. 1985. Surface ocean circulation in the Norwegian Sea 15,000 BP to present. BOREAS 14, 243–57.CrossRefGoogle Scholar
Jardine, W. G. 1975. Chronology of Holocene marine transgression and regression in south-western Scotland. BOREAS 4, 173–96.CrossRefGoogle Scholar
Jelgersma, S. 1979. Sea-level changes in the North Sea basin. ACTA UNIV UPS SYMP UNIV UPS QUIGENTESIMUM CELEBRANTIS 2. Sweden: Uppsala.Google Scholar
Knudsen, K. L. 1978. Middle and Late Weichselian marine deposits at Nørre Lyngby, northern Jutland, Denmark, and their foraminiferal faunas. DAN GEOL UNDERS II Raekke No. 112, 144.Google Scholar
Knudsen, K. L. 1982. Foraminifers. In Olausson, E. (ed.) The Pleistocene/Holocene boundary in south-western Sweden. SVER GEOL UNDERS 76(7), 148–77.Google Scholar
Knudsen, K. L. & Nordberg, K. 1987. Late Weichselian and Holocene biostratigraphy in borings southeast of Frederikshavn, Denmark. BULL GEOL SOC DEN 36, 289303.Google Scholar
Krog, H. & Tauber, H. 1974. C-14 chronology of Late- and Post-glacial marine deposits in North Jutland. DAN GEOL UNDERS. ARBOG 1973, 93105.Google Scholar
Lee, A. J. & Ramster, J. W. (eds) 1981. Atlas of the Seas Around The British Isles. Minsitry of Agriculture, Fisheries and Food. Southampton: HMSO.Google Scholar
Long, D., Bent, A., Harland, R., Gregory, D. M., Graham, D. K. & Morton, A. C. 1986. Late Quaternary palaeontology, sedimentology and geochemistry of a vibrocore from the Witch Ground Basin, central North Sea. MAR GEOL 73, 109–23.CrossRefGoogle Scholar
Lubinsky, I. 1980. Marine bivalve molluscs of the Canadian central and eastern Arctic: faunal composition and zoogeography. CANADIAN BULLETIN OF FISHERIES AND AQUATIC SCIENCES, 207, 1111.Google Scholar
Mangerud, J. 1977. Late Weichselian marine sediments containing shells, foraminifera and pollen, at Ågotnes, western Norway. NOR GEOL TIDSSKR 57, 2354.Google Scholar
Mangerud, J., Lie, S. E., Furnes, H., Kristiansen, I. L. and Lømo, L. 1984. A Younger Dryas ash bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. QUATERNARY RES 21, 85104.CrossRefGoogle Scholar
McMillan, A. A. and Browne, M. A. E. 1989. Fold basins in Late-Devensian glacimarine sediments at Shieldhall, Glasgow. SCOTT J GEOL 25, 295305.CrossRefGoogle Scholar
Nagy, J. & Ofstad, K. 1980. Quaternary foraminifera and sediments in the Norwegian Channel. BOREAS 9, 3952.CrossRefGoogle Scholar
Nagy, J. and Qvale, G. 1985. Benthic foraminifers in Upper Quaternary Skagerrak deposits. NOR GEOL TIDSSKR 65, 107–13.Google Scholar
Peacock, J. D. 1971. Marine shell dates and the chronology of deglaciation in western Scotland. NATURE PHYS SCI 230, 43–5.CrossRefGoogle Scholar
Peacock, J. D. 1975. Scottish late- and post-glacial marine deposits. In Gemmell, A. M. D. (ed.), Quaternary Studies in North East Scotland. Department of Geography, Aberdeen University.Google Scholar
Peacock, J. D. 1981. Scottish Late-glacial marine deposits and their environmental significance. In Neale, J. & Flenley, J. (eds), The Quaternary in Britain, pp. 222–36, Oxford: Pergamon Press.Google Scholar
Peacock, J. D. 1983. A model for Scottish interstadial marine palaeotemperature 13 000 to 11 000 B.P. BOREAS 12, 7382.CrossRefGoogle Scholar
Peacock, J. D. 1987. Charting polar and temperate water in the northeast Atlantic from 18 000BP to present using Scottish near-shore marine deposits. QUATERNARY NEWSL No. 53, p. 39.Google Scholar
Peacock, J. D. 1989. Marine molluscs and Late Quaternary environmental studies with particular reference to the Late-glacial period in northwest Europe: a review. QUATERNARY SCI REV 8, 179–92.CrossRefGoogle Scholar
Peacock, J. D., Graham, D. K., Robinson, J. E. and Wilkinson, I. P. 1977. Evolution and chronology of Lateglacial marine environments at Lochgilphead, Scotland. In Gray, J. M. & Lowe, J. J. (eds), Studies in the Scottish Lateglacial Environment, pp. 89100, Oxford: Pergamon Press.CrossRefGoogle Scholar
Peacock, J. D., Graham, D. K. & Gregory, D. M. 1978. Late-glacial and post-glacial marine environments at Ardyne, Scotland, and their significance in the interpretation of the Clyde sea area. REP INST GEOL SCI No. 78/17.Google Scholar
Peacock, J. D., Graham, D. K. & Gregory, D. M. 1980. Late- and Post-glacial marine environments in part of the inner Cromarty Firth Scotland. REP INST GEOL SCI 80/7.Google Scholar
Peacock, J. D., Harkness, D. D., Housley, R. A., Little, J. A. & Paul, M. A. 1989. Radiocarbon ages for a glaciomarine bed associated with the maximum of the Loch Lomond Readvance in west Benderloch, Argyll. SCOTT J GEOL 25, 6979.CrossRefGoogle Scholar
Petersen, K. S. 1984. Late Weichselian sea-levels and faunal communities in northern Vendsyssel, Jutland, Denmark. In Mörner, N. A. & Karlén, (eds), Climatic changes on a Yearly to Millennial Basis, pp. 63–8. Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar
Rokoengen, K., Løfaldi, M., Rise, L., Løken, T. & Carlsen, R. 1982. Description and dating of a submerged beach in the northern North Sea. MAR GEOL 50, M21–M28.CrossRefGoogle Scholar
Salvigsen, O. & Österholm, H. 1982. Radiocarbon dated raised beaches and glacial history of the northern coast of Spitsbergen, Svalbard. POLAR RESEARCH, 1, 97115.CrossRefGoogle Scholar
Sars, G. O. 1878. Bidrag til Kundshaven om Norges arktiske fauna 1. Mollusca regionis arcticae norvegia. 466 pp. Christiania University.Google Scholar
Schneider, J. Sparre 1885. Undersøgelse af dyrlivet i de arktiske fjorde 3. Tromsøsundets Molluskfauna. TROMSØ MUSEUMS AARSHEFTER 8, 45112.Google Scholar
Sejrup, H. P., Aarseth, I., Ellingson, K. L., Reither, E., Jansen, E., Løvlie, R.Bent, A., Brigham-Grette, J., Larsen, E. & Stoker, M. 1987. Quaternary stratigraphy of the Fladen area, central North Sea: a multidisciplinary study. J QUATERNARY SCI 2, 3558.CrossRefGoogle Scholar
Selby, I. 1989. Quaternary Geology of the Hebridean Continenta Margin. Nottingham Univeristy Ph.D. thesis (unpubl.).Google Scholar
Shotton, F. W., Blundell, D. J. & Williams, R. E. G. 1970. Birmingham University Radiocarbon Dates IV. RADIOCARBON 12, 385–99.CrossRefGoogle Scholar
Sørensen, R. 1983. Glacial deposits in the Oslofjord area. In Ehlers, J. (ed) Glacial Deposits in North-west Europe, pp. 1928. Rotterdam: Balkema.Google Scholar
Spjeldnaes, N. 1978. Ecology of late and Post-Glacial marine faunas in the Oslo Fjord area. GEOL FÖREN STOCKH FÖRH 100, 189202.CrossRefGoogle Scholar
Stoker, M. S., Harland, R., Morton, A. C. & Graham, D. K. 1989. Late Quaternary stratigraphy of the North Rockall Trough and Faeroe-Shetland Channel. J QUATERNARY SCI 4, 211–22.CrossRefGoogle Scholar
Sutherland, D. G. 1984. The Quaternary deposits and landforms of Scotland and the neighbouring shelves. QUATERNARY SCI REV 3, 157254.CrossRefGoogle Scholar
Sutherland, D. G. 1986. A review of Scottish marine shell radiocarbon dates, their standardization and interpretation. SCOTT J GEOL 22, 145–64.CrossRefGoogle Scholar
Svendsen, J. I. & Mangerud, J. 1987. Late Weichselian and Holocene sea-level history for a cross-section of western Norway. J. QUATERNARY SCI 2, 113–32.CrossRefGoogle Scholar
Thompson, M. E. 1978. IGS studies of the geology of the Firth of Forth and its approaches. REP INST GEOL SCI No. 77/17.Google Scholar
Thomsen, E., and Vorren, T. O. 1986. Macrofaunal palaeoecology and stratigraphy in late Quaternary shelf sediments off Northern Norway. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 56, 103–50.CrossRefGoogle Scholar
Undås, A. I. (1942). Fossilfunnet i Blomvåg. NATUREN, 97107.Google Scholar
Vorren, T. O., Vorren, K-D., Aim, T., Gulliksen, S. & Løvlie, R. 1988. The last deglaciation (20 000–11000 BP) on Andøya, northern Norway. BOREAS 17, 4177.CrossRefGoogle Scholar
Welin, E., Ekngstrand, L. & Vaczy, S. 1971. Institute of Geological Sciences Radiocarbon Dates I. RADIOCARBON 10, 26–8.CrossRefGoogle Scholar
Yonge, C. M. & Thompson, T. E. (1976). Living marine molluscs. London: Collins.Google Scholar