Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:16:18.045Z Has data issue: false hasContentIssue false

The end of Late Glacial in north-eastern Iberia: the small mammal assemblage from Cudó cave (Mont-Ral, Tarragona)

Published online by Cambridge University Press:  01 February 2023

Dama Q. ARJANTO*
Affiliation:
Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain.
Mónica FERNÁNDEZ-GARCÍA
Affiliation:
EvoAdapta I+D+I Group, Dpto. CienciasHistóricas, Universidad de Cantabria, Av. Los Castros 44, Santander 39005, Spain.
Juan Manuel LÓPEZ-GARCÍA
Affiliation:
Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain. Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.
Josep Maria VERGÈS
Affiliation:
Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain. Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.
*
*Corresponding author. Email: damaqoriy@gmail.com

Abstract

One of the markers of the Late Pleistocene is highly fluctuating climatic conditions, with the Last Glacial Maximum (LGM, 26.5–19 ka cal before present (BP)) known to be one of the coldest periods. This work explores how the environment of north-eastern Iberia changed in relation to global climatic changes experienced during the Late Pleistocene, specifically around the LGM. Small mammal assemblages from Cudó cave (Tarragona, Spain) were used considering their well-known reliability for palaeoenvironmental reconstructions. Based on the taxonomic identification and the taphonomic analysis, several methodologies covering both qualitative and quantitative approaches were used to obtain the palaeoenvironmental information corresponding to level 107 and level 105 of Cudó cave (31.2–24.4 and 15.5–10.2 ka cal BP, respectively). The taphonomic results obtained point out owls (category 3) as the main accumulator of the small mammals. The palaeoenvironmental reconstruction shows that both levels experienced colder (−7.2oC/–4.4 °C) and wetter (+848 mm/ + 586 mm) climatic conditions than nowadays. However, in level 107 the environment was dominated by mid-European species and rocky landscape, while in level 105 it was dominated by Mediterranean species and woodland habitat. These conditions are consistent with the trend in north-eastern Iberia following several climatic events before and after the LGM coinciding with the period of Cudó cave assemblages.

Type
Spontaneous Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Agencia Estatal de Meteorología (España) & Instituto de Meteorologia (Portugal) 2011. Atlas Climático Ibérico 1971–2000 [Iberian climate atlas 1971–2000]. AEMET AND imp. [In Spanish.]Google Scholar
Álvarez-Lao, D. J., Álvarez-Vena, A., Ballesteros, D., García, N. & Laplana, C. 2020. A cave lion (Panthera spelaea) skeleton from Torca del León (NW Iberia): micromammals indicate a temperate and forest environment corresponding to GI-11 (MIS 3). Quaternary Science Reviews 229.CrossRefGoogle Scholar
Álvarez-Vena, A., Álvarez-Lao, D., Laplana, C., Quesada, J. M., Rojo, J., García-Sánchez, E. & Menéndez, M. 2021. Environmental context for the Late Pleistocene (MIS 3) transition from Neanderthals to early Modern Humans: analysis of small mammals from La Güelga Cave, Asturias, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 562.CrossRefGoogle Scholar
Andrews, P. 1990. Owls, caves and fossils. London: British Museum (Natural History) and University of Chicago Press.Google Scholar
Avery, D. M. 2022. Rodents and other micromammals from the Pleistocene strata in Excavation 1 at Wonderwerk Cave, South Africa: a work in progress. Quaternary International 614, 2336.CrossRefGoogle Scholar
Baca, M., Popović, D., Baca, K., Lemanik, A., Doan, K., Horáček, I., López-García, J. M., Bañuls-Cardona, S., Pazonyi, P., Desclaux, E., Crégut-Bonnoure, E., Berto, C., Lenardić, J. M., Mie˛kina, B., Murelaga, X., Cuenca-Bescós, G., Krajcarz, M., Marković, Z., Petculescu, A., Wilczyński, J., Knul, M. V., Stewart, J. R. & Nadachowski, A. 2020. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – evidence from ancient DNA. Quaternary Science Reviews 233.CrossRefGoogle Scholar
Barnosky, A. D. 1994. Defining climate's role in ecosystem evolution: clues from late quaternary mammals. Historical Biology 8, 173–90.CrossRefGoogle Scholar
Blain, H. A., Bailon, S., Cuenca-Bescós, G., Arsuaga, J. L., Bermúdez de Castro, J. M. & Carbonell, E. 2009. Long-term climate record inferred from early–middle Pleistocene amphibian and squamate reptile assemblages at the Gran Dolina Cave, Atapuerca, Spain. Journal of Human Evolution 56, 5565.CrossRefGoogle ScholarPubMed
Burjachs, F., López-García, J. M., Allué, E., Blain, H. A., Rivals, F., Bennàsar, M. & Expósito, I. 2012. Palaeoecology of Neanderthals during Dansgaard–Oeschger cycles in northeastern Iberia (Abric Romaní): from regional to global scale. Quaternary International 247, 2637.CrossRefGoogle Scholar
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N. J., Schönfeld, J. & Zahn, R. 2001. Variability of the Western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16, 4052.CrossRefGoogle Scholar
Cacho, I., Shackleton, N., Elderfield, H., Sierro, F. J. & Grimalt, J. O. 2006. Glacial rapid variability in deep-water temperature and δ18O from the Western Mediterranean Sea. Quaternary Science Reviews 25, 3294–311.CrossRefGoogle Scholar
Carrión, J. S., Yll, E., Walker, M. J., Legaz, A. J., Chaín, C. & López, A. 2003. Glacial refugia of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain: new evidence from cave pollen at two Neanderthal man sites. Global Ecology and Biogeography 12, 119–29.CrossRefGoogle Scholar
Cascalheira, J., Alcaraz-Castaño, M., Alcolea-González, J., de Andrés-Herrero, M., Arrizabalaga, A., Aura Tortosa, J. E., Garcia-Ibaibarriaga, N. & Iriarte-Chiapusso, M. J. 2021. Paleoenvironments and human adaptations during the Last Glacial Maximum in the Iberian Peninsula: a review. Quaternary International.CrossRefGoogle Scholar
Chaline, J. 1972. Les rongeurs du Pléistocène Moyen et Supérieur de France [Middle and Upper Pleistocene rodents of France]. Paris: Éditions du Centre National de la Recherche Scientifique. [In French.]Google Scholar
Chaline, J., Baudvin, H., Jammot, D. & Girons, M.-C. S. 1974. Les Proies des rapaces: Petits mammifères et leur environnement [Raptor prey: small mammals and their environment]. Paris, Dion. [In French.]Google Scholar
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W. & McCabe, A. M. 2009. The Last Glacial Maximum. Science 325, 710–4.CrossRefGoogle ScholarPubMed
Dupuis, I. 1986. Les Chiroptères du Quaternaire en France 1ere partie: Cles pour la determination du material fossile [Quaternary Chiroptera in France 1st part: Keys for the determination of fossil material]. Paris, Université de Paris I. [In French.]Google Scholar
Evans, E. M. N., Van Couvering, J. A. H. & Andrews, P. 1981. Palaeoecology of Miocene sites in Western Kenya. Journal of Human Evolution 10, 99116.CrossRefGoogle Scholar
Fattorini, S. 2015. On the concept of chorotype. Journal of Biogeography 42, 2246–51.CrossRefGoogle Scholar
Fernández-García, M. 2019. Late Pleistocene palaeoenvironmental reconstruction of Northeastern Iberia: taxonomic, taphonomic and isotopic approach based on small-mammal assemblages. Ferrara: Università degli Studi di Ferrara.Google Scholar
Fernández-García, M. & López-García, J. M. 2013. Palaeoecology and biochronology based on the rodents’ analysis from the Late Pleistocene/Holocene of Toll Cave (Moià, Barcelona). Spanish Journal of Palaeontology 28, 227.CrossRefGoogle Scholar
Fernández-García, M., López-García, J. M., Bennàsar, M., Gabucio, M. J., Bargalló, A., Gema Chacón, M., Saladié, P., Vallverdú, J., Vaquero, M. & Carbonell, E. 2018. Paleoenvironmental context of Neanderthal occupations in northeastern Iberia: the small-mammal assemblage from Abric Romaní (Capellades, Barcelona, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 506, 154–67.CrossRefGoogle Scholar
Fernández-García, M., López-García, J. M. & Lorenzo, C. 2016. Palaeoecological implications of rodents as proxies for the Late Pleistocene–Holocene environmental and climatic changes in northeastern Iberia. Comptes Rendus – Palevol 15, 707–19.CrossRefGoogle Scholar
Fernández-García, M., López-García, J. M., Royer, A., Lécuyer, C., Allué, E., Burjachs, F., Chacón, M. G., Saladié, P., Vallverdú, J. & Carbonell, E. 2020. Combined palaeoecological methods using small-mammal assemblages to decipher environmental context of a long-term Neanderthal settlement in northeastern Iberia. Quaternary Science Reviews 228.CrossRefGoogle Scholar
Fernández-García, M., Royer, A., López-García, J. M., Bennàsar, M., Goedert, J., Fourel, F., Julien, M. A., Bañuls-Cardona, S., Rodríguez-Hidalgo, A., Vallverdú, J. & Lécuyer, C. 2019. Unravelling the oxygen isotope signal (δ18O) of rodent teeth from northeastern Iberia, and implications for past climate reconstructions. Quaternary Science Reviews 218, 107–21.CrossRefGoogle Scholar
Fernandez-Jalvo, Y. & Andrews, P. 1992. Small mammal taphonomy of Gran Dolina Atapuerca, España. Journal of Archaeological Science 19, 407–28.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Andrews, P., Denys, C., Sesé, C., Stoetzel, E., Marin-Monfort, D. & Pesquero, D. 2016. Taphonomy for taxonomists: implications of predation in small mammal studies. Quaternary Science Reviews 139, 138–57.CrossRefGoogle Scholar
Fernández, F. J. & Pardiñas, U. F. J. 2018. Small mammals taphonomy and environmental evolution during Late Pleistocene–Holocene in Monte Desert: the evidence of Gruta del Indio (central west Argentina). Journal of South American Earth Sciences 84, 266–75.CrossRefGoogle Scholar
Finlayson, G., Finlayson, C., Giles Pacheco, F., Rodriguez Vidal, J., Carrión, J. S. & Recio Espejo, J. M. 2008. Caves as archives of ecological and climatic changes in the Pleistocene – the case of Gorham's cave, Gibraltar. Quaternary International 181, 5563.CrossRefGoogle Scholar
Fletcher, W. J. & Sánchez Goñi, M. F. 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the Western Mediterranean Basin over the last 48,000 yr. Quaternary Research 70, 451–64.CrossRefGoogle Scholar
Fullola, J. M., Mangado, X., Langlais, M., De la Torre, M. S. Foucher, P., San Juan, C. & Mercadal, O. 2019. The site of Montlleó in the context of the Mediterranean and Pyrenean Solutrean. In Bicho, N. F., Cascalheira, J. & Schmidt, I. (eds), Human adaptations to the last glacial maximum: the Solutrean and its neighbors, 133–47. Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
Furió, M. 2007. Los Insectívoros (Soricomorpha, Erinaceomorpha, Mammalia) del Neógeno Superior del Levante Ibérico [The Insectivores (Soricomorpha, Erinaceomorpha, Mammalia) of the Upper Neogene of the Iberian Levant]. Barcelona: Universitat Autónoma de Barcelona. [In Spanish.]Google Scholar
Galán, J. 2019. Estudio de los quirópteros (Chiroptera, Mammalia) del Cuaternario de Aragón y el norte de la península ibérica [Study of bats (Chiroptera, Mammalia) from the Quaternary of Aragon and the north of the Iberian Peninsula]. Saragossa: Universidad de Zaragosa.Google Scholar
Gauch, H. G. 1989. Multivariate analysis in community ecology. Cambridge: Cambridge University Press.Google Scholar
Gosàlbez, J. 1987. Insectívors i Rosegadors de Catalunya. Metodologia d'estudi i catàleg faunistic [Insectivores and Rosegadors of Catalonia. Faunistic study and catalogue methodology]. Barcelona: Barcelona. [In Catalan.]Google Scholar
Hadler, P., Dias, A. S. & Bauermann, S. 2013. Multidisciplinary studies of Southern Brazil Holocene: archaeological, palynological and paleontological data. Quaternary International 305, 119–26.CrossRefGoogle Scholar
Hammer, Ø, Harper, D. A. T. & Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Hernández Fernández, M. 2001. Bioclimate discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography 10, 189204.CrossRefGoogle Scholar
Hernández Fernández, M., Álvarez Sierra, & Peláez-Campomanes, P. 2007. Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 500–26.CrossRefGoogle Scholar
Hernández Fernández, M. & Peláez-Campomanes, P. 2003. The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Global Ecology and Biogeography 12, 507–17.CrossRefGoogle Scholar
Lécuyer, C., Hillaire-Marcel, C., Burke, A., Julien, M. A. & Hélie, J. F. 2021. Temperature and precipitation regime in LGM human Refugia of Southwestern Europe inferred from δ13C and δ18O of large mammal remains. Quaternary Science Reviews 255.CrossRefGoogle Scholar
Lewis, C. J., McDonald, E. V., Sancho, C., Peña, J. L. & Rhodes, E. J. 2009. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, 141–52.CrossRefGoogle Scholar
López-García, J. M., Blain, H. A., Bennàsar, M., Alcover, J. A., Bañuls-Cardona, S., Fernández-García, M., Fontanals, M., Martín, P., Morales, J. I., Muñoz, L., Pedro, M. & Vergés, J. M. 2014a. Climate and landscape during Heinrich Event 3 in south-western Europe: the small-vertebrate association from Galls Carboners cave (Mont-ral, Tarragona, north-eastern Iberia). Journal of Quaternary Science 29, 130–40.CrossRefGoogle Scholar
López-García, J. M., Blain, H. A., Bennàsar, M., Euba, I., Bañuls, S., Bischoff, J., López-Ortega, E., Saladié, P., Uzquiano, P. & Vallverdú, J. 2011a. A multiproxy reconstruction of the palaeoenvironment and palaeoclimate of the Late Pleistocene in northeastern Iberia: Cova dels Xaragalls, Vimbodí-Poblet, Paratge Natural de Poblet, Catalonia. Boreas 41, 235–49.CrossRefGoogle Scholar
López-García, J. M., Blain, H. A., Bennàsar, M. & Fernández-García, M. 2014b. Environmental and climatic context of Neanderthal occupation in Southwestern Europe during MIS3 inferred from the small-vertebrate assemblages. Quaternary International 326–327, 319–28.CrossRefGoogle Scholar
López-García, J. M., Blain, H. A., Bennàsar, M., Sanz, M. & Daura, J. 2013. Heinrich event 4 characterized by terrestrial proxies in Southwestern Europe. Climate of the Past 9, 1053–64.CrossRefGoogle Scholar
López-García, J. M., Blain, H. A., Cuenca-Bescós, G., Ruiz-Zapata, M. B., Dorado-Valiño, M., Gil-García, M. J., Valdeolmillos, A., Ortega, A. I., Carretero, J. M., Arsuaga, J. L., de Castro, J. M. B. & Carbonell, E. 2010. Palaeoenvironmental and palaeoclimatic reconstruction of the latest Pleistocene of El Portalón Site, Sierra de Atapuerca, northwestern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 453–64.CrossRefGoogle Scholar
López-García, J. M., Blain, H. A., Morales, J. I., Lorenzo, C., Bañuls-Cardona, S. & Cuenca-Bescós, G. 2012. Small-mammal diversity in Spain during the Late Pleistocene to early Holocene: climate, landscape, and human impact. Geology 41, 267–70.CrossRefGoogle Scholar
López-García, J. M. & Cuenca-Bescós, G. 2010. Late Pleistocene climatic evolution in Catalonia (Northeastern Spain) from the small-mammals association. Quaternaire 21, 249–57.Google Scholar
López-García, J. M., Cuenca-Bescós, G., Finlayson, C., Brown, K. & Pacheco, F. G. 2011b. Palaeoenvironmental and palaeoclimatic proxies of the Gorham's cave small mammal sequence, Gibraltar, southern Iberia. Quaternary International 243, 137–42.CrossRefGoogle Scholar
López-García, J. M., Soler, N., Maroto, J., Soler, J., Alcalde, G., Galobart, À, Bennàsar, M. & Burjachs, F. 2015. Palaeoenvironmental and palaeoclimatic reconstruction of the Latest Pleistocene of L'Arbreda Cave (Serinyà, Girona, northeastern Iberia) inferred from the small-mammal (insectivore and rodent) assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 244–53.CrossRefGoogle Scholar
Lyman, R. L. 2016. The mutual climatic range technique is (usually) not the area of sympatry technique when reconstructing paleoenvironments based on faunal remains. Palaeogeography, Palaeoclimatology, Palaeoecology 454, 7581.CrossRefGoogle Scholar
Maier, A., Mayr, C. & Peresani, M. 2021. The last glacial maximum in Europe – State of the art in geoscience and archaeology. Quaternary International 581–582, 16. doi:10.1016/j.quaint.2021.02.036.CrossRefGoogle Scholar
Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B. L. & Fletcher, W. J. 2012. Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quaternary Science Reviews 36, 139–53.CrossRefGoogle Scholar
Nadachowski, A. 1982. Late quaternary rodents of Poland with special reference to morphotype dentition analysis of voles. Warsaw: PWN.Google Scholar
Palomo, L. J., Gisbert, J. & Blanco, J. C. 2007. Atlas y libro rojo de los mamiferos terrestres de España [Atlas and red book of terrestrial mammals of Spain]. Madrid: Dirección General para la Biodiversidad-SECEM-SECEMU. [In Spanish.]Google Scholar
Pèrez-Obiol, R. & Julià, R. 1994. Climatic change on the Iberian Peninsula recorded in a 30,000-Yr pollen record from Lake Banyoles. Quaternary Research 41, 91–8.CrossRefGoogle Scholar
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J. & Winstrup, M. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 14–28. doi:10.1016/j.quascirev.2014.09.007.CrossRefGoogle Scholar
Repenning, C. A. 2001. Beringian climate during intercontinental dispersal: a mouse eye view. Quaternary Science Reviews 20, 2540.CrossRefGoogle Scholar
Reumer, J. W. F. 1984. Ruscinian and early Pleistocene Soricidae (Insectivora, Mammalia) from Tegelen (The Netherlands) and Hungary. Scripta Geologica 73, 1173.Google Scholar
Rivas Martínez, S. 1987. Series de vegetación [Vegetation series] [WWW Document]. URL https://almazcara.forestry.es/. [In Spanish.]Google Scholar
Roucoux, K. H., de Abreu, L., Shackleton, N. J. & Tzedakis, P. C. 2005. The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews 24, 1637–53.CrossRefGoogle Scholar
Rowe, J. S. 1956. Uses of undergrowth plant Species in forestry. Ecology 37, 461–73.CrossRefGoogle Scholar
Sanchez Goñi, M. F., Turon, J. L., Eynaud, F. & Gendreau, S. 2000. European Climatic response to millenial-scale changes in the atmosphere–ocean system during the Last Glacial period. Quaternary Research 54, 394403.CrossRefGoogle Scholar
Sans-Fuentes, M. A. & Ventura, J. 2000. Distribution patterns of the small mammals (Insectivora and Rodentia) in a transitional zone between the Eurosiberian and the Mediterranean regions. Journal of Biogeography 27, 755–64.CrossRefGoogle Scholar
Scott, L., Fernandez-Jalvo, Y. & Denys, C. 1996. Owl pellets, pollen and the palaeoenvironment. South African Journal of Science 92, 223–4.Google Scholar
Sevilla, P. 1988. Quiropteros del Cuaternario Español: Paleontologia i Evolucio. Paleontologia i Evolució vol. 22, 113–233. [Spanish Quaternary Chiropterans: Paleontology and Evolution]. [In Spanish.]Google Scholar
Sociedad Española de Ornitología/Birdlife. 2021. Libro Rojo de las aves de España [Red Book of Birds of Spain]. Madrid: Sociedad Española de Ornitología/Birdlife. [In Spanish.]Google Scholar
Vallverdú, J., López-García, J. M., Blain, H. A., Saladié, P., Uzquiano, P., Bischoff, J. & Vaquero, M. 2012. El Pleistocè de la Cova dels Xaragalls (Vimbodi) [The Pleistocene of the Cova dels Xaragalls (Vimbodi)]. Barcelona: Generalitat de Catalunya. [In Catalan.]Google Scholar
Van Dam, J. A., Abdul Aziz, H., Sierra, MÁÁ, Hilgen, F. J., Van Den Hoek Ostende, L. W., Lourens, L. J., Mein, P., Van Der Meulen, A. J. & Pelaez-Campomanes, P. 2006. Long-period astronomical forcing of mammal turnover. Nature 443, 687–91.CrossRefGoogle ScholarPubMed
Vergès, J. M. 2017. Memòria de excavacions arqueològiques programades a La Cova del Cudó Mont-Ral (Alt Camp) [Memory of scheduled archaeological excavations at La Cova del Cudó Mont-Ral (Alt Camp)]. Tarragona [In Spanish.]Google Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21, 213–251.CrossRefGoogle Scholar
Williams, S. E., Marsh, H. & Winter, J. 2002. Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology 83, 1317.CrossRefGoogle Scholar
Wilson, D. E. & Reeder, D. M. (eds.) 2005. Mammal species of the world: A taxonomic and geographic reference, 3rd edn. Baltimore, MA: John Hopkins University Press.CrossRefGoogle Scholar