Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T05:17:07.616Z Has data issue: false hasContentIssue false

The endocranial anatomy of Gogonasus andrewsae Long, 1985 revealed through micro CT-scanning

Published online by Cambridge University Press:  04 July 2014

Timothy Holland*
Affiliation:
Museum Victoria, Melbourne, Victoria 3001, Australia School of Geosciences, Monash University, Clayton, Victoria, Australia, 3800. Email: tholland@museum.vic.gov.au

Abstract

Micro computed tomography has revealed as yet undescribed internal braincase anatomy of the tetrapodomorph fish Gogonasus andrewsae from the Frasnian Gogo Formation, Paddy's Valley, Kimberley Region, Western Australia. The complete material, including the cranial cavities and channels for blood vessels and nerves, reveals several notable features inside the endocranium. The ethmosphenoid unit includes a median capsule, which lies underneath the median postrostral and rostral series. Based on innervation and association with cutaneous vessels, potential electroreceptive function is inferred for this capsule. Several regions of poor ossification, including foramina for the glossopharyngeal and abducens nerves, as well as the apparent suture separating the ethmoid from the sphenoid portions of the braincase, are possibly indicative of early ontogenetic features. Former interpretations of the course for the superficial ophthalmic nerve inside the nasal capsule of Osteolepis and Gyroptychius may be incorrect, with new research supporting a path through the nasal septum, as in Gogonasus.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Ahlberg, P. E. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zoological Journal of the Linnean Society 103, 241–87.Google Scholar
Ahlberg, P. E. 2006. CT scanning the nose of Eusthenopteron . Journal of Vertebrate Paleontology, Supplement 3 26, 35A.Google Scholar
Ahlberg, P. E., Blom, H., Brazeau, M., Clément, G. & Snitting, D. 2005. The virtual Eusthenopteron: inside the head of a Devonian lobe-fin with CT. In Ivanov, A. & Young, G. A. (eds) Middle Palaeozoic Vertebrates from Laurussia: Relationships with Siberia, Kazakhstan, Asia and Gondwana. Ichthyolith Issues Special Publication 9, 34.Google Scholar
Bemis, W. E. & Hetherington, T. E. 1982. The rostral organ of Latimeria chalumnae: Morphological evidence of an electroreceptive function. Copeia 1982, 467–71.CrossRefGoogle Scholar
Bjerring, H. C. 1986. Electric tetrapods? In Rocek, Z. (ed.) Studies in Herpetology, 29–36. Prague: Charles University.Google Scholar
Bullock, T. H., Bodznick, D. A. & Northcutt, R. G. 1983. The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Research Reviews 6, 2546.CrossRefGoogle Scholar
Campbell, K. S. W. & Barwick, R. E. 1986. Paleozoic lungfishes – A review. Journal of Morphology, Supplement 1, 93131.CrossRefGoogle Scholar
Campbell, K. S. W. & Barwick, R. E. 2001. Diabolepis and its relationship to the Dipnoi. Journal of Vertebrate Paleontology 21, 227–41.Google Scholar
Chang, M. M. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, south-western China. PhD Dissertation. Department of Geology, University of Stockholm, Sweden.Google Scholar
Chang, M. M. & Yu, X. B. 1997. Reexamination of the relationship of Middle Devonian osteolepids – fossil characters and their interpretations. American Museum Novitates 3189, 120.Google Scholar
Cheng, H. 1989. On the tubuli in Devonian Lungfishes. Alcheringa 13, 153–66.Google Scholar
Clément, G. 2002. Evidence for the lack of choanae in the Porolepiformes. Journal of Vertebrate Paleontology 21, 795802.Google Scholar
Clément, G. & Janvier, P. 2004. Powichthys spitsbergensis sp. nov., a new member of the Dipnomorpha (Sarcopterygii, lobe-finned fishes) from the Lower Devonian of Spitsbergen, with remarks on basal dipnomorph anatomy. Fossils and Strata 50, 92112.CrossRefGoogle Scholar
Coates, M. I. & Friedman, M. 2010. Litoptychus bryanti and characteristics of stem tetrapod neurocrania. In Elliott, D. K., Maisey, J. G., Yu, X. & Miao, D. (eds) Morphology, Phylogeny and Paleobiogeography of Fossil Fishes, 389416. München: Verlag Dr. Friedrich Pfeil.Google Scholar
Czech-Damal, N. U., Liebschner, A. Miersch, L. Klauer, G., Hanke, F. D., Marshall, C., Dehnhardt, G. & Hanke, W. 2012. Electroreception in the Guiana dolphin (Sotalia guianensis). Proceedings of the Royal Society B: Biological Sciences 279, 663–68.CrossRefGoogle ScholarPubMed
Fox, R. C., Campbell, K. S. W., Barwick, R. E. & Long, J. A. 1995. A new osteolepiform fish from the Lower Carboniferous Raymond Formation, Drummond Basin, Queensland. Memoirs of the Queensland Museum 38, 97221.Google Scholar
Friedman, M., Coates, M. I. & Anderson, P. 2007. First discovery of a primitive coelacanth fin fills a major gap in the evolution of paired fins and limbs. Evolution and Development 9, 329–37.Google Scholar
Fritzsch, B. & Munz, H. 1986. Electroreception in amphibians. In Bullock, T. & Heiligenberg, W. (eds) Electroreception, 483–96. New York: Wiley–Interscience.Google Scholar
Holland, T. 2013. Pectoral girdle and fin anatomy of Gogonasus andrewsae Long, 1985: implications for tetrapodomorph limb evolution. Journal of Morphology 274, 147–64.Google Scholar
Holland, T & Long, J. A. 2009. On the phylogenetic position of Gogonasus andrewsae Long 1985, within the Tetrapodomorpha. Acta Zoologica, Supplement 1 90, 285–96.Google Scholar
Huxley, T. H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata and more particularly the Mammalia. Proceedings of the Zoological Society of London 1880, 649–62.Google Scholar
Janvier, P. 1980. Osteolepid remains from the Devonian of the Middle East, with particular reference to the endoskeletal shoulder girdle. In Panchen, A. L. (ed.) The Terrestrial Environment and the Origin of Land Vertebrates. Systematics Association Special Volume 15, 223–54. London: Academic Press.Google Scholar
Janvier, P., & Clément, G. & Cloutier, R. 2007. A primitive megalichthyid fish (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications. Geodiversitas 29, 249–68.Google Scholar
Jarvik, E. 1937. On the species of Eusthenopteron found in Russia and the Baltic States. Bulletin of the Geological Institute of Uppsala 27, 63127.Google Scholar
Jarvik, E. 1942. On the Structure of the Snout of Crossopterygians and Lower Gnathostomes in General. Zoologiska Bidrag fran Uppsala 21, 235675.Google Scholar
Jarvik, E. 1954. On the visceral skeleton in Eusthenopteron with a discussion of the parasphenoid and palatoquadrate in fishes. Kungliga Svenska Vetenskapsakademiens Handlingar 9, 174.Google Scholar
Jarvik, E. 1966. Remarks on the structure of the snout in Megalichthys and certain other rhipidistid crossopterygians. Arkiv för Zoologi 19, 4198.Google Scholar
Jarvik, E. 1972. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp., and a discussion on the structure of the head in the Porolepiformes. Meddelelser om Grønland 187, 1307.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates, Vol 1, 99194. London: Academic Press.Google Scholar
Jarvik, E. 1996. The evolutionary importance of Eusthenopteron foordi (Osteolepiformes). In Schultze, H-P. & Cloutier, R. (eds) Devonian Fishes and Plants of Miguasha, Quebec, Canada, 285315. München: Verlag Dr. Friedrich Pfeil.Google Scholar
Jessen, H. L. 1975. A new choanate fish, Powichthys thorsteinssoni n.g., n.sp., from the Early Lower Devonian of the Canadian Arctic Archipelago. In Lehman, J. P. (ed.) Problèmes actuels de Paléontologie. Evolution des Vertébrés, 213–22. Paris: Colloques Internationaux du Centre.Google Scholar
Johanson, Z., Ahlberg, P. E. & Ritchie, A. 2003. The braincase and palate of the tetrapodomorph sarcopterygian Mandageria fairfaxi: morphological variability near the fish-tetrapod transition. Palaeontology 46, 271–93.Google Scholar
Johanson, Z. & Ahlberg, P. E. 2001. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 4374.Google Scholar
Kalmijn, A. J. 1971. The electric sense of sharks and rays. Journal of Experimental Biology 55, 371–83.Google Scholar
Kulczycki, J. 1960. Porolepis (Crossopterygii) from the Lower Devonian of the Holy Cross Mountains. Acta Palaeontologica Polonica 5, 65106.Google Scholar
Lebedev, O. A. 1995a. Morphology of a new osteolepidid fish from Russia. Bulletin du Muséum National d'Histoire Naturelle. 4e Série. Section C. Sciences de la Terre. Paléontologie, Géologie, Minéralogie 17, 287341.Google Scholar
Lebedev, O. A. 1995b. Middle Famennian (Upper Devonian) Chondrichthyans and Sarcopterygians from Oryol region, Central Russia. Geobios 19, 361–68.Google Scholar
Limaye, A. 2006. Drishti – Volume Exploration and Presentation Tool. Poster presentation, Vis, Baltimore. Canberra: The Australian National University.Google Scholar
Long, J. A. 1985. A new osteolepidid fish from the Upper Devonian Gogo Formation, Western Australia. Records of the Western Australian Museum 12, 361–77.Google Scholar
Long, J. A., Barwick, R. E. & Campbell, K. S. W. 1997. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long 1985, from the Upper Devonian Gogo Formation, Western Australia. Records of the Western Australian Museum 53, 189.Google Scholar
Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. G. 2006. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199202.Google Scholar
Long, J. A. & Trinajstic, K. 2000. Devonian micro vertebrate faunas of Western Australia. Courier Forschungs-Institut Senckenberg 22, 471–85.Google Scholar
Lu, J., Zhu, M., Long, J. A., Zhao, W., Senden, T. J., Jia, L. & Qiao, T. 2012. The earliest known stem-tetrapod from the Lower Devonian of China. Nature Communications 3, 1160.Google Scholar
Pettigrew, J. D. 1999. Electroreception in monotremes. The Journal of Experimental Biology 202, 14471454.CrossRefGoogle ScholarPubMed
Romer, A. S. 1937. The braincase of the Carboniferous crossopterygian Megalichthys nitidus . Bulletin of the Museum of Comparative Zoology 82, 173.Google Scholar
Romer, A. S. 1955. Herpetichthyes, Amphibioidei, Choanichthyes, or Sarcopterygii? Nature 176, 126.CrossRefGoogle Scholar
Sakellariou, A., Sawkins, T. J., Limaye, A. & Senden, T. J. 2004. X-ray tomography for mesoscale physics applications. Physica A339, 152–58.Google Scholar
Säve-Söderbergh, G. 1936. On the morphology of Triassic stegocephalians from Spitsbergen, and the interpretation of the endocranium in the Labyrinthodontia. Kungliga Svenska Vetenskapsakademiens Handlingar 3, 1181.Google Scholar
Schultze, H-P. 1974. Osteolepidide Rhipidistia (Pisces) aus dem Pennsylvanian von Illinois/USA. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 146, 2950.Google Scholar
Schultze, H-P. & Arsenault, M. 1985. The panderichthyid fish Elpistostege: a close relative of tetrapods? Palaeontology 28, 293309.Google Scholar
Shubin, N. H, Daeschler, E. B. & Jenkins, F. A. Jr. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 764–71.Google Scholar
Snitting, D. 2008. A redescription of the anatomy of the Late Devonian Spodichthys buetleri Jarvik, 1985 (Sarcopterygii, Tetrapodomorpha) from East Greenland. Journal of Vertebrate Paleontology 28, 637–55.Google Scholar
Stensiö, E. 1963. The brain and the cranial nerves in fossil, lower craniate vertebrates. Skrifter utgitt av Det Norske Videnskaps-Akademii Oslo I Mat-Naturv.Klasse 13, 3120.Google Scholar
Swartz, B. 2012. A marine stem-tetrapod from the Devonian of Western North America. PLoS ONE 7(3), e33683: 111.Google Scholar
Thomson, K. S. 1964a. Gyroptychius (Rhipidistia, Osteolepidae) from the Middle Devonian of Scotland. Annals and Magazine of Natural History 7, 725–32.Google Scholar
Thomson, K. S. 1964b. The comparative anatomy of the snout in rhipidistian fishes. Bulletin of the Museum of Comparative Zoology 131, 313–57.Google Scholar
Thomson, K. S. 1965. The endocranium and associated structures in the Middle Devonian rhipidistian fish Osteolepis . Proceedings of the Linnean Society of London 176, 181–95.Google Scholar
Thomson, K. S. 1966. The evolution of the tetrapod middle ear in the rhipidistian–amphibian transition. American Zoologist 6, 379–97.Google Scholar
Thomson, K. S. 1967. Notes on the relationship of the rhipidistian fishes and the ancestry of the tetrapods. Journal of Paleontology 41, 660–74.Google Scholar
Thomson, K. S. 1977. On the individual history of cosmine and a possible electroreceptive function of the pore canal system in fossil fishes. In Andrews, S. M. (ed.) Problems in vertebrate evolution. Linnean Society Symposium Series 4, 247–70. London: Academic Press.Google Scholar
Trinajstic, K. & George, A. D. 2009. Microvertebrate biostratigraphy of Upper Devonian (Frasnian) carbonate rocks in the Canning and Carnarvon basins of Western Australia. Palaeontology 52, 641–59.Google Scholar
Vorobyeva, E. I. 1959. New crossopterygian genera from the Late Devonian of the Lovat' river. Trudy Paleontologischeskogo Instituta, Akademia Nauk SSSR 3, 95106.Google Scholar
Vorobyeva, E. I. 1960. New data on the crossopterygian genus Panderichthys from the USSR Devonian. Paleontologicheskiy zhurnal 1, 8796.Google Scholar
Vorobyeva, E. I. 1962. Rhizodont crossopterygians from the main Devonian Field. Trudli Paleontoloffchesko Instituta 104, 1108.Google Scholar
Vorobyeva, E. I. 1971. The ethmoid region of Panderichthys and some problems of the cranial morphology of crossopterygians. Trudy Paleontologischeskogo Instituta, Akademia Nauk SSSR 130, 142–59.Google Scholar
Vorobyeva, E. I. 1977. Morphology and nature of evolution of crossopterygian fishes. Trudy Paleontologischeskogo Instituta, Akademia Nauk SSSR 163, 1239.Google Scholar
Watson, D. M. S. 1925a. The internal ear of Osteolepis . Journal of Anatomy 59, 385–86.Google Scholar
Watson, D. M. S. 1925b. The structure of certain palaeoniscids and the relationships of that group with other bony fish. Proceedings of the Zoological Society of London 1925, 815–68.Google Scholar
Worobjewa, E. J. 1975. Formenvielfalt und Verwandtschafisbeziehungen der Osteolepidida (Crossopterygii, Pisces). Paläontologische Zeitschrift 49, 4455.Google Scholar