Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T07:10:38.067Z Has data issue: false hasContentIssue false

Feldspar crystallisation in felsic magmas: a review

Published online by Cambridge University Press:  03 November 2011

Hanna Nekvasil
Affiliation:
Hanna Nekvasil, Department of Earth and Space Sciences, State University of New York, Stony Brook, NY 11794-2100, U.S.A.

Abstract

Understanding the controls on the evolution of natural feldspars is greatly assisted by coupling experimental determinations of feldspar/melt equilibria with thermodynamic modelling and the calculation of crystallisation paths. Such a combined approach permits the evaluation of the influence of intensive and extensive variables on feldspar compositions. Feldspar compositional paths are influenced only to a minor degree by pressure. The presence of H2O or other melt component incompatible in feldspar has a more major effect, not only in increasing the temperature interval over which feldspar crystallises, but also in decreasing the amount of Ab enrichment of the feldspar which occurs during crystallisation. The amount and behaviour of H2O in the magma has a pronounced influence on feldspar compositions when two feldspars are stable. Under conditions of high bulk H2O content or constant activity of H2O, plagioclase and alkali feldspar compositions evolve by increasing Ab content similar to the behaviour manifested in the simple binary systems. If the bulk H2O content is low, however, and the H2O content increases during crystallisation, plagioclase evolves by increasing Ab content until alkali feldspar is stabilised. From that point on, plagioclase compositions change mainly by decreasing Or content, while alkali feldspar evolves mainly by increasing Or content.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. N. Jr 1978. Peritectic relations in the system An-Ab-Or-Qz-H2O. CAN MINERAL 16, 245–56.Google Scholar
Boettcher, A. L. 1980. The systems albite-orthoclase-water and albite-orthoclase-quartz-water. J GEOPHYS RES 85(B12), 6955–62.CrossRefGoogle Scholar
Bowen, N. L. 1913. The melting phenomena of the plagioclase feldspars. AM J SCI 35, 577–99.CrossRefGoogle Scholar
Bowen, N. L. & Tuttle, O. F. 1950. The system NaAlSi3O8-KAlSi3O8-H2O. J GEOL 58, 489511.CrossRefGoogle Scholar
Burnham, C. W. & Nekvasil, H. 1986. Equilibrium properties of granite pegmatite magmas. AM MINERAL 71, 239–63.Google Scholar
Carmichael, I. S. E. 1963. The crystallization of feldspar in volcanic acid liquids. Q J R SOC LONDON 119, 95131.Google Scholar
Carmichael, I. S. E. 1965. Trachytes and their phenocrysts. MINERAL MAG 34, 107–25.Google Scholar
Erikson, R. L. 1979. An experimental and theoretical investigation of plagioclase melting relations. M.S. Thesis, The Pennsylvania State University.Google Scholar
Fuhrman, M., Frost, R. & Lindsley, D. H. 1988. Crystallization conditions of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. J PETROL 29, 699729.CrossRefGoogle Scholar
Henry, D. J., Navrotsky, A. & Zimmermann, H. D. 1982. Thermodynamics of plagioclase-melt equilibria in the system albite-anorthite-diopside. GEOCHIM COSMOCHIM ACTA 46, 381–91.CrossRefGoogle Scholar
Johannes, W. 1978. The melting of plagioclase in the system Ab-An-H2O and Qz-Ab-An-H2O at = 5kbar, an equilibrium problem. CONTRIB MINERAL PETROL 66, 295303.CrossRefGoogle Scholar
Lindsley, D. H. & Nekvasil, H. 1989. A ternary feldspar model for all reasons. EOS 70(15), 506.Google Scholar
Luth, W. C., Jahns, R. & Tuttle, F. 1964. The granite system at pressures of 4 to 10 kbar. J GEOPHYS RES 69, 759–73.CrossRefGoogle Scholar
Moll, E. J. 1981. Geochemistry and petrology of mid-Tertiary ash flow tuffs from the Sierra la Virulent area, Eastern Chihuahua, Mexico. J GEOPHYS RES 86(B11), 10321–34.CrossRefGoogle Scholar
Nash, W. P., Carmicahel, I. S. E. & Johnson, R. W. 1969. The mineralogy and petrology of Mount Suswa, Kenya. J PETROL 10, 409–39.CrossRefGoogle Scholar
Nekvasil, H. 1986. A theoretical thermodynamic investigation of the system Ab-Or-An-Qz(-H2O) and implications for melt speciation. Ph.D. Thesis, The Pennsylvania State University.Google Scholar
Nekvasil, H. 1988a. Calculation of equilibrium crystallization paths of compositionally simple hydrous felsic melts. AM MINERAL 73(9), 956–65.Google Scholar
Nekvasil, H. 1988b. Calculated effect of anorthite component on the crystallization paths of H2O-undersaturated haplogranitic melts. AM MINERAL 73(9), 966–82.Google Scholar
Nekvasil, H. 1990. Reaction relations in the granite system: Implications for trachytic and syenitic magmas. AM MINERAL 75, 560–71.Google Scholar
Nekvasil, H. 1991. New experimental constraints on anhydrous phase equilibria in the granite system. EOS 72, 303.Google Scholar
Nekvasil, H. & Burnham, C. W. 1987. The calculated individual effects of pressure and water content on phase equilibria in the granite system. In Mysen, B. O. (ed.) Magmatic processes: Physicochemical principles, GEOCHEM SOC SPEC PUB 1. University Park, PA: The Geochemical Society.Google Scholar
Nekvasil, H. & Lindsley, D. H. 1990. Termination of the 2 feldspar + liquid curve in the system Ab-Or-An-H2O at low H2O contents. AM MINERAL 75, 1071–9.Google Scholar
Nicolls, J. & Carmichael, I. S. E. 1969. Peralkaline liquids: A petrological study. CONTRIB MINERAL PETROL 20, 268–94.CrossRefGoogle Scholar
Parsons, I. & Brown, W. L. 1988. Sidewall crystallization in the Klokken intrusion: zoned ternary feldspars and coexisting minerals. CONTRIB MINERAL PETROL 98, 431–43.CrossRefGoogle Scholar
Saxena, S. K. & Ribbe, P. H. 1972. Activity-composition relations in in feldspars. CONTRIB MINERAL PETROL 37, 131–8.CrossRefGoogle Scholar
Schairer, J. F. 1950. The alkali feldspar join in the system NaAlSiO4-KAlSiO4-SiO2. J GEOL 58, 512–7.CrossRefGoogle Scholar
Seil, M. K. & Blencoe, J. G. 1979. Activity-composition relations of NaAlSi3O8-CaAl2Si2O8 feldspars at 2kbars, 600-800°C. GEOL SOC AM ABSTR PROG 11, 513.Google Scholar
Stewart, D. B. & Roseboom, E. H. Jr 1962. Lower temperature terminations of the three-phase region plagioclase-alkali felspar-liquid. J PETROL 3, 280315.CrossRefGoogle Scholar
Tuttle, O. F. & Bowen, N. L. 1958. Origin of granite in light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. GEOL SOC AM 74.Google Scholar
Webster, J. D., Holloway, J. H. & Hervig, R. L. 1987. Phase equilibria of a Be-, U- and F-enriched vitrophyre from Spor Mountain, Utah. GEOCHIM COSMOCHIM ACTA 51, 389402.CrossRefGoogle Scholar
Yoder, H. S., Stewart, D. B. & Smith, J. R. 1957. Ternary feldspars. CARNEGIE INST WASHINGTON YEARB 55, 206–14.Google Scholar