Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:50:26.385Z Has data issue: false hasContentIssue false

First evidence of insect herbivory on Albian aquatic angiosperms of the NE Iberian Peninsula

Published online by Cambridge University Press:  09 January 2019

Pablo EstÉvez-Gallardo
Affiliation:
Departamento de Xeociencias Mariñas e Ordenación do Territorio, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain. Email: jbdiez@uvigo.es
Luis M. Sender
Affiliation:
Facultad de Ciencias (Geológicas), Universidad de Zaragoza, 50009 Zaragoza, Spain.
Eduardo Mayoral
Affiliation:
Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, 21007 Huelva, Spain.
José B. Diez*
Affiliation:
Departamento de Xeociencias Mariñas e Ordenación do Territorio, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain. Email: jbdiez@uvigo.es
*
*Corresponding author

Abstract

Evidence of herbivory on Laurasian Nymphaeaceae leaves from Lower Cretaceous (Upper Albian) deposits is presented for the first time. The types of damage on leaves consist of both hole feeding and margin feeding, which were found on foliar remains of the taxa Ploufolia cerciforme and Aquatifolia cf. fluitans. Within the first category of damage, the Damage Type 78 (DT78) type on Ploufolia leaves and type DT02 on Aquatifolia foliar lamina were recorded. The second category of damage has only been identified in Ploufolia leaves, and it corresponds to type DT12. The subsequent palaeoichnologic interpretation made it possible to compare these records with damage caused by the extant water lily pest to make a possible palaeoecological interpretation.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Aguilar, M. J., Ramírez del Pozo, J. & Riba, O. 1971. Algunas precisiones sobre la sedimentación y paleoecología del Cretácico inferior en la zona de Utrillas-Villarroya de los Pinares (Teruel). Estudios Geológicos 27, 497512.Google Scholar
Banerji, J. 2004. Evidence of insect-plant interactions from the Upper Gondwana sequence (Lower Cretaceous) in the Rajmahal Basin, India. Gondwana Research 7, 205210.Google Scholar
Bernhardt, P. 2000. Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Systematics and Evolution 222(Bernhardt, P.), 293320.Google Scholar
Bernhardt, P., Sage, T., Weston, P., Azuma, H., Lam, M., Thien, L. B. & Bruhl, J. 2003. The pollination of Trimenia moorei (Trimeniaceae): floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of Botany 92, 445458.Google Scholar
Braz, F. F., Utida, G., Bernades-de-Oliveira, M. E. C., Mohr, B. & Wappler, T. 2011. Insect activity marks on Lower Cretaceous Nymphealean leaves from Crato Formation, Araripe Basin, Brazil. Paleontologia: Cenários de Vida, 4, 5767.Google Scholar
Carvalho, M. R., Wilf, P., Barrios, H., Windsor, D. M., Currano, E. D., Labandeira, C. C. & Jaramillo, C. A. 2014. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLoS One 9, e94950.Google Scholar
Cronin, G., Wissing, K. D. & Lodge, D. M. 1998. Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs. semi-terrestrial insects and submersed vs. floating leaves. Freshwater Biology 39, 243257.Google Scholar
Falder, A. B., Rothwell, G. W., Mapes, G., Mapes, R. H. & Doguzhaeva, L. A. 1998. Pityostrobus milleri sp. Nov., a pinaceous cone from the Lower Cretaceous (Aptian) of southwestern Russia. Review of Palaeobotany and Palynology 103, 253261.Google Scholar
Grauvogel-Stamm, L. & Kelber, K. A. 1996. Plant-insect interactions and coevolution during the Triassic in Western Europe. Paleontologia Lombarda 5, 523.Google Scholar
Krassilov, V., Lewy, Z., Nevo, E. & Silantieva, N. 2005. Late Cretaceous (Turonian) flora of southern Negev, Israel. Sofia, Moscow: Pensoft.Google Scholar
Krassilov, V. & Rasnitsyn, A. 2008. Plant-arthropod interactions in the early angiosperm history. Evidence from the Cretaceous of Israel. Sofia, Moscow: Pensoft.Google Scholar
Krassilov, V. & Shuklina, S. 2008. Arthropod trace diversity on fossil leaves from the mid-Cretaceous of Negev, Israel. Alavesia 2, 239245.Google Scholar
Kukalová-Peck, J. 1991. Fossil history and the evolution of hexapod structures. The Insects of Australia 1, 141179.Google Scholar
Labandeira, C. C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28, 153193.Google Scholar
Labandeira, C. C. 1998. The role of insects in late Jurassic to Middle Cretaceous ecosystems. Lower and Middle Cretaceous Terrestrial Ecosystems: Bulletin 14, 105.Google Scholar
Labandeira, C. C. 2002. The history of associations between plants and animals. Plant–Animal Interactions: An Evolutionary Approach, 248, 2676.Google Scholar
Labandeira, C. C. 2007. The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Science 14, 259275.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R. & Marsh, F. 2007. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Washington, DC: Smithsonian Institution.Google Scholar
Lendínez, A., Ruíz, V. & Carls, P. 1989. Memoria de la Hoja n° 466 (Moyuela). Mapa Geológico de España E. 1:50.000, Segunda Serie (MAGNA), 1ª Edición. Madrid: Instituto Tecnológico GeoMinero de España.Google Scholar
Mohr, B. A., Bernardes-de-Oliveira, M. E. & Taylor, D. W. 2008. Pluricarpellatia, a nymphaealean angiosperm from the Lower Cretaceous of northern Gondwana (Crato Formation, Brazil). Taxon 57, 11471158.Google Scholar
Poinar, G. 2005. A Cretaceous palm bruchid, Mesopachymerus antiqua, n. gen., n. sp. (Coleoptera: Bruchidae: Pachymerini) and biogeographical implications. Proceedings of the Entomological Society of Washington 107, 392397.Google Scholar
Popov, Y. A. 1971. Historical development of the Hemipterous infraorder Nepomorpha. Akademiia Nauk S.S.S.R. Paleontologicheskii Institut, Trudy 129, 1–228.Google Scholar
Saporta, G. 1894. Flore fossile du Portugal. Nouvelles contributions à la flore mésozoïque. Lisbon: Academie Royale des Sciences.Google Scholar
Scott, H. M. 1924. Observations on the habits and life history of Gallerucella nymphaeae (Coleoptera). Transactions of the American Microscopical Society 43, 1116.Google Scholar
Sender, L. M., Diez, J. B., Ferrer, J., Pons, D. & Rubio, C. 2005. Preliminary data on a new Albian flora from the Valle del Río Martín, Teruel, Spain. Cretaceous Research 26, 898905.Google Scholar
Sender, L. M., Gomez, B., Diez, J. B., Coiffard, C., Martín-Closas, C., Villanueva-Amadoz, U. & Ferrer, J. 2010. Ploufolia cerciforme gen. et comb. nov.: aquatic angiosperm leaves from the Upper Albian of north-eastern Spain. Review of Palaeobotany and Palynology 161, 7786.Google Scholar
Sender, L. M., Villanueva-Amadoz, U., Diez, J. B., Sánchez-Pellicer, R., Bercovici, A., Pons, D. & Ferrer, J. 2012. A new uppermost Albian flora from Teruel province, northeastern Spain. Geodiversitas 34, 373397.Google Scholar
Sender, L. M., Doyle, J. A., Víllanueva-Amadoz, U., Pons, D., Diez, J. B. & Ferrer, J. 2016. First records of the angiosperm genus Sapindopsis fontaine (Platanaceae) in western Eurasia from middle to latest Albian deposits of Spain. Review of Palaeobotany and Palynology 230, 1021.Google Scholar
Shcherbakov, D. E., Lukashevich, E. D. & Blagoderov, V. A. 1995. Triassic Diptera and initial radiation of the order. International Journal of Dipterological Research 6, 75115.Google Scholar
Suvák, M., Gregorek, R. & Pľuchtová, M. 2012. Actual and potential role of parasitoids (Hymenoptera: Eulophidae) in control of water-lily beetle Galerucella nymphaeae (Coleoptera: Chrysomelidae) in conditions of Botanical Garden of PJ Šafárik University in Košice (Slovakia). Thaiszia Journal of Botany 22, 217242.Google Scholar
Upchurch, G. R., Crane, P. R. & Drinnan, A. N. 1994. The megaflora from the Quantico locality (Upper Albian), Lower Cretaceous Potomac Group of Virginia. Virginia Museum of Natural History Memoir 4, 157.Google Scholar
Valentín, X., Gómez, B., Daviero-Gómez, V., Charbonnier, S., Ferchaud, P., Kirejtshuk, A. G., Licht, A., Néraudeau, D., Vullo, R. & García, G. 2014. Plant-dominated assemblage and invertebrates from the lower Cenomanian of Jaunay-Clan, western France. Comptes Rendus Palevol 13, 443454.Google Scholar
Villanueva-Amadoz, U., Sender, L. M., Diez, J. B., Ferrer, J. & Pons, D. 2011. Palynological studies of the boundary marls unit (Albian-Cenomanian) from northeastern Spain. Paleophytogeographical implications. Geodiversitas 33, 137176.Google Scholar
Wallace, J. B. & O'Hop, J. 1985. Life on a fast pad: waterlily leaf beetle impact on water lilies. Ecology 66, 15341544.Google Scholar
Wang, B., Ma, J., McKenna, D. D., Yan, E. V., Zhang, H. & Jarzembowski, E. A. 2013. The earliest known longhorn beetle (Cerambycidae: Prioninae) and implications for the early evolution of Chrysomeloidea. Journal of Systematic Palaeontology 12, 565574.Google Scholar
Wang, H. & Dilcher, D. L. 2006. Aquatic angiosperms from theDakota Formation (Albian, Lower Cretaceous), Hoisington III locality, Kansas, USA. International Journal of Plant Sciences 167, 385401.Google Scholar
Wilson, G. F. 1928. Contributions from the Wisley Laboratory. L. Some pests of water lilies. Journal of the Royal Horticultural Society 53, 8191.Google Scholar
Wootton, R. J. 1988. The historical ecology of aquatic insects: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 477492.Google Scholar