Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:13:09.445Z Has data issue: false hasContentIssue false

Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe

Published online by Cambridge University Press:  03 November 2011

O. van Breemen
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A OE8.
M. Aftalion
Affiliation:
Isotope Geology Unit, Scottish Universities Research and Reactor Centre, East Kilbride, Glasgow G75 OQU, Scotland.
D. R. Bowes
Affiliation:
Department of Geology, University of Glasgow, Glasgow G12 8QQ, Scotland.
A. Dudek
Affiliation:
Department of Geology, Charles University, Albertov 6, 128 43 Prague 2, Czechoslovakia.
Z. Mísař
Affiliation:
Department of Geology, Charles University, Albertov 6, 128 43 Prague 2, Czechoslovakia.
P. Povondra
Affiliation:
Department of Mineralogy, Geochemistry and Crystallography, Charles Univeristy, Albertov 6, 128 43 Prague 2, Czechoslovakia.
S. Vrána
Affiliation:
Geological Survey of Czechoslovakia, Malostranske nam. 19, 118 21 Prague 1, Czechoslovakia.

Abstract

U–Pb zircon and Rb–Sr whole-rock analyses from various gneisses and plutonie rocks of the Moldanubian and Moravo-Silesian zones and the stable foreland of the Hercynian (Variscan) orogenic belt indicate that most of the crust in Central Europe was first formed during the Cadomian orogeny which straddles the Precambrian–Cambrian boundary. Zircons, however, have a memory of older ages which correspond with those of events known in Fennoscandia. The new radiometrie data are consistent with the stratigraphie record in that they do not provide any evidence for a major early Palaeozoic tectonothermal event between the Cadomian and Hercynian orogenies.

Granulites from two localities in the Moldanubian zone yield U–Pb zircon ages of 345 ± 5 Ma; discordant zircon data points indicate that the granulite facies metamorphism was not of long duration. Tectonic units containing these high grade rocks were emplaced amongst amphibolite facies rocks during an event of widespread shearing which has been dated at 341 ± 4 Ma on the basis of a lower U–Pb zircon intercept age from one of the sheared gneisses and 338 ± 3 Ma U–Pb ages from monazites. Rb–Sr muscovite ages of 331 ± 5 Ma from pegmatites axial planar to asymmetrical folds date the last stage of SE-directed simple shear. A Rb–Sr whole-rock isochron of 331 ± 4 Ma from a principal magmatic type of the Central Bohemian pluton confirms the field evidence that the large NE-trending plutons of the Moldanubian zone were emplaced during a late stage of the deformation. The strong disturbance of the U–Pb zircon isotopic system in the sheared gneisses suggests U loss while a high U/Th ratio in monazite from one of these tectonised rocks suggests the simultaneous passage of hydrothermal fluids. Thus a crustal source is indicated for the uranium deposits of the Moldanubian zone.

Critical to any plate tectonic model for the development of the Middle European Hercynides was the existence of an ocean in Early Devonian times which separated a North European continent from a South European continent(s). The northward movement of the South European continent over a shallowly-dipping subduction zone and subsequent continental collision can explain the high T–low P metamorphism and the imbricated tectonic style of the Moldanubian zone and adjacent Moravo-Silesian zone along the southeastern Hercynian foreland. The temporal separation of granulites and granites implies distinct conditions of formation and it has been suggested that the plutonism, following on from the imbrication of the Cadomian crust, was initiated by the subduction of wet oceanic sediments.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

14. References

Aftalion, M. & van Breemen, O. 1980. U–Pb zircon, monazite and Rb–Sr whole rock systematics of granitic gneiss and psammitic to semi-pelitic host gneiss from Glenfinnan, northwestern Scotland. CONTRIB MINERAL PETROL 72, 8798.CrossRefGoogle Scholar
Ahrendt, H., Hunziker, J. C. & Weber, K. 1978. K/Ar-Altersbestimmungen an schwach-raetamorphen Gesteinen des Rheinischen Schiefergebirges. Z DTSCH GEOL GES 129, 229–47.Google Scholar
Anderson, T. A. 1975. Carboniferous subduction complex in the Harz Mountains, Germany. BULL GEOL SOC AM 86, 7782.Google Scholar
Armstrong, R. L. 1978. Pre-Cenozoic Phanerozoic time scale–computer file of critical dates and consequences of new and in-progress decay-constant revisions. In Cohee, G. V., Glaessner, M. F. & Hedberg, H. D. (eds) Contributions to the geologic time scale, 7391. AM ASSOC PET GEOL STUD GEOL 6. (25th International Geological Congress: Geological time scale symposium).Google Scholar
Arnold, A. & Scharbert, H. G. 1973. Rb–Sr-Altersbestimmungen an Granuliten der südlichen Böhmischen Masse ins Österreich. SCHWEIZ MINERAL PETROGR MITT 53, 6178.Google Scholar
Babin, C., Cocks, L. R. M. & Walliser, O. H. 1980. Faciès, faunes et paléogéographie antécarbonifère de l'Europe. In Cogné, J. & Slansky, M. (eds) Geology of Europe from Precambrian to post-Hercynian sedimentary basins, 191202. COLLOQ 26TH INT GEOL CONGR C6.Google Scholar
Bard, J. P., Burg, J. P., Matte, Ph. & Ribeiro, A. 1980. La chaîne hercynienne d'Europe occidentale en termes de tectonique des plaques. In Cogné, J. & Slansky, M. (eds) Geology of Europe from Precambrian to post-Hercynian sedimentary basins, 233–46. COLLOQ 26TH INT GEOL CONGR C6.Google Scholar
Bard, J. P., Capdevilla, R., Matte, Ph. & Ribeiro, A. 1973. Geotectonic model tor the Iberian Variscan orogen. NAT PHYS SCI 241, 50–2.CrossRefGoogle Scholar
Behr, H. J. 1978. Subfluenz-prozesse im Grundgebirgs-stockwerk Mitteleuropas. Z DTSCH GEOL GES 129, 283318.Google Scholar
Behr, H. J. 1980. Shear zones in the granulite belts along the margins of the Bohemian Massif. In Carreras, J., Cobbold, P. R., Ramsay, J. G. & White, S. H. (eds) Shear zones in rocks, 249–54. J STRUCT GEOL SPEC ISSUE 2.Google Scholar
Behr, H. J., Walliser, O. H. & Weber, K. 1980. The development of the Rheno-hercynian and Saxo-thuringian zones of the mid-European Variscides. In Cogné, J. & Slansky, M. (eds) Geology of Europe from Precambrian to post-Hercynian sedimentary basins, 7789. COLLOQ 26TH INT GEOL CONGR C6.Google Scholar
Behr, H. J. & Weber, K. 1980. Subduktion oder Subfluenz im mitteleuropäischen Varistikum? BERLINER GEOW ABH A/B 19 (International A. Wegener-Symposium, Berlin), 22–3.Google Scholar
Bowes, D. R., Hopgood, A. M. & Mísař, Z. 1980. Characterization of tectonic regimes of the Letovice unit and Bites gneiss of the Moravicum using the structural imprint of polyphase deformation. VESTN USTR USTAVU GEOL 55, 331–42.Google Scholar
Brooks, C., Hart, S. R. & Wendt, I. 1972. Realistic use of two-error regression treatments as applied to rubidium-strontium data. REV GEOPHYS SPACE PHYS 10, 551–77.CrossRefGoogle Scholar
Burne, R. V. 1973. Palaeogeography of south west England and Hercynian continental collision. NAT PHYS SCI 241, 129–31.Google Scholar
Burrett, C. F. 1972. Plate tectonics and the Hercynian orogeny. NATURE 239, 155–7.CrossRefGoogle Scholar
Burrett, C. F. & Griffiths, J. 1977. A case for Mid European ocean. In La chaîne varisque d'Europe moyenne et occidentale, 313–28. COLLOQ INT CENT NATL RECH SCI RENNES 243.Google Scholar
Chaloupský, J. 1978. The Precambrian tectogenesis in the Bohemian Massif. GEOL RUNDSCH 67, 7290.CrossRefGoogle Scholar
Davies, G. 1981. Isotopie evolution of the Lizard Complex. In Tectonic Studies Group The Lizard Complex. London: Geological Society.Google Scholar
Dickinson, W. R. 1974. Plate tectonics and sedimentation. In Dickinson, W. R. (ed.) Tectonics and sedimentation, 127. SOC ECON PALEONTOL MINERAL SPEC PUBL 22.Google Scholar
Dornsiepen, U. F. 1979. Rb/Sr whole rock ages within the European Hercynian. A review. KRYSTALINIKUM 14, 3349.Google Scholar
Dudek, A. 1962. Zum Problem der moldanubischen Überschiebung im Nordteile der Thayakuppel. GEOLOGIE 11, 757–79.Google Scholar
Dudek, A. 1980. The crystalline basement block of the Outer Carpathians in Moravia: Bruno–Vistulicum. ROZPR CESK AKAD VED 90.Google Scholar
Dudek, A. & Melková, J. 1975. Radiometrie age determination in the crystalline basement of the Carpathian Foredeep and of the Moravian Flysch. VESTN USTR USTAVU GEOL 50, 257–64.Google Scholar
Dudek, A., Matějovská, O. & Suk, M. 1974. Gföhl orthogneiss in the Moldanubicum of Bohemia and Moravia. KRYSTALINIKUM 10, 6778.Google Scholar
Ellenberger, F. & Tamain, A. L. G. 1980. Hercynian Europe. EPISODES 1980, 22–7.Google Scholar
Fediuk, F. 1976. The Bechyně “orthogneiss”: an anatectic type of Moldanubian orthogneissoids. ACTA UNIV CAROL GEOL 3, 187207.Google Scholar
Franke, W., Eder, W., Engel, W. & Langenstrassen, F. 1978. Main aspects of geosynclinal sedimentation in the Rhenohercynian Zone. Z DTSCH GEOL GES 129, 201–16.Google Scholar
Fuchs, G. 1976. Zur Entwicklung der Böhmischen Masse. JAHRB GEOL BUNDESANST 119, 4561.Google Scholar
Gebauer, D. & Grünenfelder, M. 1976. U–Pb zircon and Rb–Sr whole-rock dating of low-grade metasediments. Example: Montagne noir (Southern France). CONTRIB MINERAL PETROL 59, 1332.Google Scholar
Gebauer, D. & Grünenfelder, M. 1979. U–Pb zircon and Rb–Sr mineral dating of eclogites and their country rocks. Example: Munchberg Gneiss Massif, Northeast Bavaria. EARTH PLANET SCI LETT 42, 3544.CrossRefGoogle Scholar
Gebauer, D., Bernard-Griffiths, J. & Grünenfeldcr, M. 1981. U–Pb zircon and monazite dating of a mafic–ultramafic complex and its country rocks. Example: Sauviat-sur-Vige, French Central Massif. CONTRIB MINERAL PETROL 76, 292300.CrossRefGoogle Scholar
Gilluly, J. 1973. Steady plate motion and episodic orogeny and magmatism. BULL GEOL SOC AM 84, 499513.2.0.CO;2>CrossRefGoogle Scholar
Gorokhov, I. M., Meilnikov, N. N., Varshavskaya, E. S. & Kutyavin, E. P. In press. Rb–Sr dating of magmatic and metamorphic events in the eastern part of the Bohemian Massif. CAS MINERAL GEOL 28.Google Scholar
Grauert, B., Hänny, R. & Soptrajanova, G. 1973. Age and origin of detrital zircons from the pre-Permian basements of the Bohemian Massif and the Alps. CONTRIB MINERAL PETROL 40, 105–30.CrossRefGoogle Scholar
Grauert, B., Hänny, R. & Soptrajanova, G. 1974. Geochronology of a polymetamorphic and anatectic gneiss region: The Moldanubicum of the area Lam-Deggendorf, Eastern Bavaira, Germany. CONTRIB MINERAL PETROL 45, 3763.CrossRefGoogle Scholar
Heier, K. S. 1973. Geochemistry of granulite facies rocks and problems of their origin. PHIL TRANS R SOC LONDON 273A, 429–42.Google Scholar
Hofmann, A. & Köhler, H. 1973. Whole rock Rb–Sr ages of anatectic gneisses from the Schwarzwald, SW Germany. NEUES JAHRB MINERAL ABH 119, 163–87.Google Scholar
Jäger, E. 1977. The evolution of the Central and West European continent. In La chaîne varisque d'Europe moyenne et occidentale, 227–39. COLLOQ INT CENT NATL RECH SCI RENNES 243Google Scholar
Jaroš, J. & Mísař, Z. 1974. Deckenbau der Svratka-Kuppel und seine Bedeutung für das geodynamische Modell der Böhmischen Masse. SB GEOL VED 26, 6982.Google Scholar
Jaroš, J. & Mísař, Z. 1976. Nomenclature of the tectonic and lithostratigraphic units in the Moravian Svratka Dome (Czechoslovakia). VESTN USTR USTAVU GEOL 51, 113–22.Google Scholar
Johnson, G. A. L. 1973. Closing of the Carboniferous Sea in Western Europe. In Tarling, D. H. & Runcorn, S. K. (eds) Implications of Continental Drift to the Earth Sciences Vol. 2, 843–50. London: Academic Press.Google Scholar
Kazanskiy, V. I., Laverov, N. P. & Tugarinov, A. I. 1975. Sources of ore material of endogene uranium deposits–in Russian. GEOL RUD METSTOROZHD 17, 5367.Google Scholar
Kirby, G. A. 1979. The Lizard complex as an ophiolite. NATURE 282, 5861.CrossRefGoogle Scholar
Klomínský, J. & Dudek, A. 1978. The plutonie geology of the Bohemian Massif and its problems. SB GEOL VED 31, 4769.Google Scholar
Kodym, O. 1972. Multiphase deformation in the Blanský les granulite massif (South Bohemia). KRYSTALINIKUM 9, 91105.Google Scholar
Krebs, W. & Wachendorf, H. 1973. Proterozoic–Paleozoic geosynclinal and orogenic evolution of Central Europe. BULL GEOL SOC AM 84, 2611–29.2.0.CO;2>CrossRefGoogle Scholar
Kutina, J. 1980. Are lineaments ineffective guides to ore deposits? GLOBAL TECTONICS METALLOG 1, 200–5.Google Scholar
Langmuir, D. 1978. Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits. GEOCHIM COSMOCHIM ACTA 42, 547–69.CrossRefGoogle Scholar
Lindert, W. 1971. Die Grundgebirgskomponenten in den altpaläozoischen Konglomeraten des Harzes. GEOLOGIE 20 BEIH 70, 199.Google Scholar
Lorenz, V. 1976. Formation of Hercynian subplates, possible causes and consequences. NATURE 262, 374–7.CrossRefGoogle Scholar
Matějovská, O. 1967. Petrogenesis of the Moldanubian granulites near Náměšt nad Oslavou. KRYSTALINIKUM 5, 85103.Google Scholar
Matějovská, O. 1975. The Moldanubian gneiss series of Southwestern Moravia and its relation to granulites. VESTN USTR USTAVU GEOL 50, 345–51.Google Scholar
Mattinson, J. M. 1978. Ages, origin and thermal histories of some plutonie rocks from the Salinian Block of California. CONTRIB MINERAL PETROL 67, 233–45.CrossRefGoogle Scholar
Miller, C. F. & Bradfish, L. J. 1980. An inner Cordilleran belt of muscovite-bearing plutons. GEOLOGY 8, 412–6.2.0.CO;2>CrossRefGoogle Scholar
Mísař, Z. 1960. Metasomatic granitization and its zonality in the Keprník dome in the Hruby Jeseník Mountains. ROZPR CESK AKAD VED 70.Google Scholar
Mísař, Z. 1961. Geologicke postaveni bitesske ortoruly. CAS MINERAL GEOL 6, 289–96.Google Scholar
Mísař, Z. & Jelínek, E. 1981. Inclusions of peridotites, pyroxenites, eclogites and opals in the leptynites of the Moldanubicum at the locality Bory (SW Moravia)–in Czech. VESTN USTR USTAVU GEOL 56, 1320.Google Scholar
Molnar, P. & Atwater, T. 1978. Interarc spreading and Cordilleran tectonics as alternatives related to the age of subducted oceanic lithosphere. EARTH PLANET SCI LETT 41, 330–40.Google Scholar
Naumov, G. B. 1959. Transportation of uranium in hydrothermal solutions as a carbonate. GEOCHEMISTRY 1, 520.Google Scholar
Overstreet, W. C. 1967. The geologic occurrence of monazite. U S GEOL SURV PROF PAP 530.Google Scholar
Pankhurst, R. J. & Pidgeon, R. T. 1976. Inherited isotope systems and the source region pre-history of early Caledonian granites in the Dalradian Series of Scotland. EARTH PLANET SCI LETT 31, 5568.CrossRefGoogle Scholar
Patchett, P. J., Gale, N. H., Goodwin, R. & Humm, M. J. 1980. Rb–Sr whole-rock isochron ages of late Precambrian to Cambrian igneous rocks from southern Britain. J GEOL SOC LONDON 137, 649–56.Google Scholar
Piasecki, M. A. J. & van Breemen, O. 1979. A Morarian age for the ‘younger Moines’ of central and western Scotland. NATURE 278, 734–6.Google Scholar
Pidgeon, R. T. & Aftalion, M. 1978. Cogenetic and inherited zircon U–Pb systems in granites: Palaeozoic granites of Scotland and England. In Bowes, D. R. & Leake, B. E. (eds) Crustal evolution in northwestern Britain and adjacent regions, 183220. GEOL J SPEC ISSUE 10.Google Scholar
Pidgeon, R. T. & Bowes, D. R. 1972. U–Pb ages of granulites from the Central Region of the Lewisian, northwestern Scotland. GEOL MAG 109, 247–58.CrossRefGoogle Scholar
Pin, C. & Lancelot, J. 1982. U–Pb dating of an early Paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. CONTRIB MINERAL PETROL 79, 112.CrossRefGoogle Scholar
Raymond, L. A. 1980. Episodic accretion and plutonism in southwestern Alaska. EARTH PLANET SCI LETT 49, 2933.Google Scholar
Raymond, L. A. & Swanson, S. E. 1980. Accretion and episodic plutonism. NATURE 285, 317–9.CrossRefGoogle Scholar
Romberger, S. B. 1978. Hydrothermal transport and deposition of uranium, and the origin of vein uranium deposits. GEOL SOC AM ABSTR PROGRAM 10, 480.Google Scholar
Scharbert, S. 1977. Neue Ergebnisse radiometrischer Altersdatierungen an Gesteinen des Waldviertels. ARBEITSTAG GEOL BUNDESANST, 1115.Google Scholar
Scharbert, S. & Batík, P. 1980. The age of the Thaya (Dyje) pluton. VERH GEOL BUNDESANST 3, 325–31.Google Scholar
Schroeder, E. 1981. Main features of the geologic development of the G. D. R. In: Ophiolites and Initialites of northern border of the Bohemian Massif. Guide book of excursions in German Democratic Republic and Polish People's Republic 1, 116. Potsdam: Academy of Sciences of German Democratic Republic.Google Scholar
Schwab, M. & Mathe, G. 1981. A geological cross-section through the Variscides in the German Democratic Republic (Eastern Erzgebirge, Central Saxonian Lineament, Saxonian Granulite Complex, Harz Mountains). GEOL EN MIJNBOUW 60, 129–35.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R. & Ziegler, A. M. 1979. Paleozoic base maps. J GEOL 87, 217–77.Google Scholar
Smulikowski, K. 1960. Evolution of the granite-gneisses in the Śnieżnik mountains–East Sudetes. 21ST INT GEOL CONGR 14, 120–30.Google Scholar
Soper, N. J. & Barber, A. J. 1982. A model for the deep structure of the Moine thrust zone. J GEOL SOC LONDON 139, 127–38.Google Scholar
Steiger, R. H., Bär, M. T. & Büsch, W. 1973. The zircon age of an anatectic rock in the Central Schwarzwald. FORTSCHR MINERAL 50, 131–2.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. EARTH PLANET SCI LETT 36, 359–62.Google Scholar
Stelcl, J. 1960. Petrografie kulmských slepenců j. části Drahanské vysočiny. (Petrography of culm conglomerates of the southern part of Drahanská vysočina). Folia Fac. Sci. Nat. Univ. Brno I/1.Google Scholar
Suess, F. E. 1913. Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. DENKSCHR AKAD WISS WIEN 88, 541631.Google Scholar
Suess, F. E. 1926. Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Berlin: Borntraeger.Google Scholar
Suk, M. 1974. Lithology of Moldanubian metamorphics. CAS MINERAL GEOL 19, 373–89.Google Scholar
Svoboda, J.et al. 1966. Regional geology of Czechoslovakia Part I The Bohemian Massif. Prague: Geological Survey of Czechoslovakia.Google Scholar
Teisseyre, H., Smulikowski, K. & Obere, J. 1957. Regionalna Geologia Polski 3(1). Kraków: Naukowe.Google Scholar
Todt, W. A. & Büsch, W. 1981. U–Pb investigations on zircon from pre-Variscan gneisses–1. A study from the Schwarzwald, West Germany. GEOCHIM COSMOCHIM ACTA 45, 17891801.Google Scholar
Treloar, P. J., Bluck, B. J., Bowes, D. R. & Dudek, A. 1980. Hornblende-garnet metapyroxenite beneath serpentinite in the Ballantrae complex of SW Scotland and its bearing on the depth provenance of obducted oceanic lithosphere. TRANS R SOC EDINBURGH EARTH SCI 71, 201–12.CrossRefGoogle Scholar
van Breemen, O. & Bluck, B. J. 1981. Episodic granite plutonism in the Scottish Caledonides. NATURE 291, 113–7.Google Scholar
van Breemen, O. & Piasecki, M. A. J. 1982. The Glen Kyallachy Granite and its bearing on the nature of the Caledonian orogeny in Scotland. J. GEOL SOC LONDON 139 (in press).Google Scholar
van Breemen, O., Aftalion, M., Pankhurst, R. J. & Richardson, S. W. 1979. Age of the Glen Dessary Syenite, Inverness-shire: diachronous Palaeozoic metamorphism across the Great Glen. SCOTT J GEOL 15, 4962.CrossRefGoogle Scholar
Van der Voo, R., Briden, J. C. & Duff, B. A. 1980. Late Precambrian and Paleozoic paleomagnetism of the Atlantic-bordering continents. In Cogné, J. & Slansky, M. (eds) Geology of Europe from Precambrian to post-Hercynian sedimentary basins, 203–12. COLLOQ 26TH INT GEOL CONGR C6.Google Scholar
Vejnar, Z. 1971. Grundfragen des Moldanubikums und seine Stellung in der Böhmischen Masse. GEOL RUNDSCH 60, 1455–65.CrossRefGoogle Scholar
Vitrac, A. M., Albarede, F. & Allègre, C. J. 1981. Lead isotopic composition of Hercynian granitic K-feldspar constrains continental genesis. NATURE 291, 460–4.Google Scholar
Vrána, S. 1979. Polyphase shear folding and thrusting in the Moldanubicum of southern Bohemia. VESTN USTR USTAVU GEOL 54, 7586.Google Scholar
Vrána, S. & Jakeš, P. 1982. Orthopyroxene and two-pyroxene granulites from a segment of charnockitic crust in southern Bohemia. VESTN USTR USTAVU GEOL 57, 129–43.Google Scholar
Walliser, O. H. 1981. The geosynclinal development of the Rheinische Schiefergebirge (Rhenohercynian Zone of the Variscides; Germany). GEOL EN MIJNBOUW 60, 8996.Google Scholar
Weber, K. 1981. The structural development of the Rheinische Schiefergebirge. GEOL EN MIJNBOUW 60, 149–59.Google Scholar
Werner, C. D. 1981. Saxonian granulite massif. In: Ophiolites and Initialites of the northern border of the Bohemian Massif. Guidebook of excursions in German Democratic Republic and Polish People's Republic. 1, 129–62. Potsdam: Academy of Sciences of German Democratic Republic.Google Scholar
Windley, B. F. 1977. The evolving continents. London: Wiley.Google Scholar
York, D. 1969. Least squares fitting of a straight line with correlated errors. EARTH PLANET SCI LETT 5, 320–4.CrossRefGoogle Scholar
Zatopek, A. 1979. On geodynamical aspects of geophysical synthesis in central Europe. In Vaněk, J. (ed.) Geodynamic investigations in Czechoslovakia, 91104. Slovak Academy of Sciences, Bratislava: Veda.Google Scholar
Zoubek, V. 1969. Age relations in metamorphic terrains of the Bohemian Massif: some methods and results. In Wynne Edwards, H. R. (ed.) Age relations in high-grade metamorphic terrains, 7381. GEOL ASSOC CAN SPEC PAP 5.Google Scholar
Zwart, H. J. 1969. Metamorphic fades series in the European orogenic belts and their bearing on the causes of orogeny. In Wynne-Edwards, H. R. (ed.) Age relations in high-grade metamorphic terrains, 716. GEOL ASSOC CAN SPEC PAP 5.Google Scholar
Zwart, H. J. 1976. Regional metamorphism in the Variscan orogeny of Europe. NOVA ACTA LEOPOLD N F 224 (45) (F. Kossmat-Symposium), 361–7.Google Scholar
Zwart, H. J. & Dornsiepen, U. F. 1978. The tectonic framework of Central and Western Europe. GEOL MIJNBOUW 57, 627–54.Google Scholar