Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:27:07.512Z Has data issue: false hasContentIssue false

Granite-hosted mineral deposits of the New Ross area, South Mountain Batholith, Nova Scotia, Canada: P, T and X constraints of fluids using fluid inclusion thermometry and decrepitate analysis

Published online by Cambridge University Press:  03 November 2011

Sarah Carruzzo
Affiliation:
Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 3J5,Canada; e-mail: carruzzo@is2.dal.ca; clarke@is.dal.ca
Daniel J. Kontak
Affiliation:
Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2T9,Canada; e-mail: kontakdj@gov.ns.ca
D. Barrie Clarke
Affiliation:
Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 3J5,Canada; e-mail: carruzzo@is2.dal.ca; clarke@is.dal.ca

Abstract

The 370 Ma peraluminous South Mountain Batholith (SMB) intrudes Meguma Supergroup metasedimentary rocks in Nova Scotia. The New Ross area of the SMB contains polymetallic mineralisation (Sn, W, U, Mo, Cu and Mn) in pegmatite, greisen and vein directly or indirectly associated with highly evolved fractions of the SMB. Eight mineral deposits from this area have several fluid inclusion types hosted by quartz: (1) monophase liquid (L); (2) monophase vapour (V); (3) aqueous, L-V (4) aqueous, L-rich + solids; (5) aqueous, L-rich + halite. Inclusions have irregular to equant shapes and are pseudo-secondary or secondary. The irregularity and variability of L:V ratios within fluid inclusion populations suggest post-entrapment modifications of inclusions (i.e. necking).

Thermometric data indicate three distinct fluids in terms of salinity: (1) 19-25 wt. % equiv. NaCl (rarely 14-25 wt. % NaCl equiv.), (2) 29-43 wt. % equiv. NaCl, and (3) 0-9 wt. % equiv. NaCl. Temperatures of first melting and ice/hydrohalife melting indicate CaCl2 in solution. Proximity of the deposits to Meguma Supergroup metasedimentary rocks suggests that this Ca component may be externally derived. The majority of the low-salinity fluid population has the composition of meteoric water. Electron microprobe analyses of artificially decrepitated mounds identify Na, Ca and K as major solutes, with a continuum in terms of compositions. Other solute components in the mounds are Fe and Ba, and a variety of metals of unknown speciation also occur (Cu, Zn, Fe, Ni). Homogenisation temperatures (Th) range from c. 80°C to 370°C, but for inclusion assemblages the range is 10°C to 20°C. Given the 3 kbar depth of emplacement of the SMB, estimated entrapment temperatures are c. 200°C to 550°C. The fluid inclusion data appear to reflect: (1) trapping of mixed Na-K-Ca brines during isobaric cooling in pegmatite and greisen deposits as indicated by large ranges in Th; (2) formation of deposits at different ambient pressures (i.e. depth); and (3) mixing of fluids of different reservoirs (i.e. magmatic, metamorphic, meteoric).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D. E. L. 1996. Fluid inclusions and microstructure of flexuralslip bedding-concordant veins within the Ovens Anticline, Lunenburg, Nova Scotia (Unpublished Honours Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
Bodnar, R. J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683–4.Google Scholar
Bodnar, R. J., Reynolds, T. J.& Kuehn, C. A. 1985. Fluid-inclusion systematics in epithermal systems. Reviews in Economic Geology 2, 7397.Google Scholar
Bodnar, R. J.& Vityk, M. O. 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In De Vivo, B.& Frezzotti, M. L. (eds) Short Course of the Working Group (IMA), Fluid inclusions in minerals: Methods and Applications, 117–31. Blacksburg, Virginia: Virginia Tech.Google Scholar
Boullier, A.-M., Firdaous, K.& Robert, F. 1998. On the significance of aqueous fluid inclusion in gold-bearing quartz vein deposits from the southeastern Abitibi Subprovince (Quebec, Canada). Economic Geology 93, 216–23.Google Scholar
Burnham, C. W. 1979. Magmas and hydrothermal fluids. In Barnes, H. L. (ed.) Geochemistry of Hydrothermal Ore Deposits, 71136. New York: John Wiley.Google Scholar
Campbell, C. O. 1940. New Ross pegmatite. Nova Scotia Department of Natural Resources, Assessment Report 21A/16B 51-L-19(00).Google Scholar
Charest, M. H. 1976. Petrology, geochemistry, and mineralization of the New Ross area, Lunenburg County, Nova Scotia (Unpublished M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
Chatterjee, A. K., Robertson, J.& Pollock, D. 1982. A summary on the petrometallogenesis of the uranium mineralization at Millet Brook, South Mountain Batholith, Nova Scotia. Nova Scotia Department of Mines and Energy Report 82–1, 5767.Google Scholar
Chatterjee, A. K.& Strong, D. F. 1984. Discriminant and factor analysis of geochemical data from granitoid rocks hosting the Millet Brook uranium mineralization, South Mountain Batholith, Nova Scotia. Uranium 1, 289305.Google Scholar
Clarke, D. B., McKenzie, C. B., Mueckc, G. K.& Richardson, S. W. 1976. Magmatic andalusite from the South Mountain Batholith, Nova Scotia. Contributions to Mineralogy and Petrology 56, 279–87.Google Scholar
Clarke, D. B., Muecke, G. K.& Chatterjee, A. K. 1985. The South Mountain Batholith: geology, petrology, geochemistry. In Chatterjee, A. K.& Clarke, D. B. (eds.) Guide to the granites and mineral deposits of Southwestern Nova Scotia, 214. Halifax, Nova Scotia: Nova Scotia Department of Mines and Energy.Google Scholar
Clarke, D. B., MacDonald, M. A., Reynolds, P. H.& Longstaffe, F. J. 1993. Leucogranites from the Eastern part of the South Mountain Batholith, Nova Scotia. Journal of Petrology 34, 653–79.Google Scholar
Clarke, D. B.& Chatterjee, A. K. 1988. Physical and chemical processes in the South Mountain Batholith. In Taylor, R. P.& Strong, D. F. (eds) Recent advances in the geology of granite-related mineral deposits Canadian Institute of Mining and Meallurgy, Special Volume 39, 5862.Google Scholar
Clarke, D. B.& Halliday, A. N. 1980. Strontium isotope geology of the South Mountain Batholith, Nova Scotia. Geochimica et Cosmochimica Acta 44, 1045–58.Google Scholar
Cline, J. S.& Bodnar, R. J. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96, 8113–26.Google Scholar
Corey, M. C. 1991. Geological map of Chester, NTS sheet 21 A/09, NSDNR, Map 90-09, scale 1:50,000.Google Scholar
Davis, D. W., Lowenstein, T. K.& Spencer, R. J. 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl CaCl2-H2O. Geochimica et Cosmochimica Acta 54, 591601.Google Scholar
Fallon, R. P. 1998. Age and thermal history of the Port Mouton Pluton, Southwest Nova Scotia: a combined U-Pb, 40Ar/39Ar age spectrum and 40Ar/39Ar lascrprobe study (Unpublished M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
Farley, E. 1978. Mineralization at the Turner and Walker deposits, South Mountain Batholith (Unpublished M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
Garland, G. D. 1953. Gravity measurements in the Maritime provinces. Dominion Observatory of Canada Publications 16, 185275.Google Scholar
Goldstein, R. H.& Reynolds, T. J. 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course Notes 31.Google Scholar
Halter, W. E., Williams-Jones, A. E.& Kontak, D. J. 1995. Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada. Economic Geology 93, 1026–51.Google Scholar
Halter, W. E., Williams-Jones, A. E., & Kontak, D. J. 1996. The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Nova Scotia. Economic Geology 91, 368–85.Google Scholar
Ham, L. J. 1991. Geological Map of Windsor (west half), NTS sheet 21 A/16, NSDNR, Map 90-10, scale 1:50,000.Google Scholar
Ham, L. J.& Kontak, D. J. 1988. A textural and chemical study of white mica in the South Mountain Batholith, Nova Scotia: primary versus secondary origin. Atlantic Geology 24, 111–21.Google Scholar
Harper, C. L. 1988. On the nature of time in the cosmological perspective (Unpublished Ph.D. Thesis, Oxford University, Oxford, U.K.).Google Scholar
Haynes, F. M., Sterner, S. M.& Bodnar, R. J. 1988. Synthetic fluid inclusions in natural quartz. IV. Chemical analyses of fluid inclusions by SEM/EDA: evaluation of method. Geochimica et Cosmochimica Acta 52, 969–77.Google Scholar
Haynes, F. M.& Kesler, S. E. 1987. Chemical evolution of brines during Mississippi Valley-Type mineralization: evidence from East Tennessee and Pine Point. Economic Geology 82, 5371.Google Scholar
Hedenquist, J. W., Arribas, A.& Reynolds, T. J. 1998. Evolution of an intrusion centred hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology 93, 373404.Google Scholar
Hicks, R. J., Jamieson, R. A.& Reynolds, P. H. 1999. Detrital and metamorphic 40Ar/39Ar ages from muscovite and whole-rock samples, Meguma Supergroup, southern Nova Scotia. Canadian Journal of Earth Sciences 36, 2332.Google Scholar
Horne, R. J. 1992. Geological Map of New Germany, NTS sheet 21 A/10, NSDNR, Map 93-02, scale 1:50,000.Google Scholar
Keppie, J. K.& Dallmeyer, R. D. 1995. Late Paleozoic collision, delamination, short-lived magmatism, and rapid denudation in the Meguma terrane (Nova Scotia, Canada): constraints from 40Ar/39Ar isotopic data. Canadian Journal of Earth Sciences 32, 644–59.Google Scholar
Keppie, J. D.& Krogh, T. E. 1999. U-Pb geochronology of Devonian granites in the Meguma Terrane of Nova Scotia, Canada: evidence for hotspot melting of a neoproterozoic source. Journal of Geology 107, 555–68.Google Scholar
Kontak, D. J. 1998. Aqueous and liquid petroleum inclusions in barite from the Walton deposit, Nova Scotia, Canada: a Carboniferous, carbonate-hosted Ba–Pb–Zn–Cu–Ag deposit. Economic Geology 93, 845–68.Google Scholar
Kontak, D. J., MacDonald, D.& Smith, P. K. 1988a. Fluid inclusion study of the Beaver Dam gold deposit, Meguma terrane, Nova Scotia. Nova Scotia Department of Natural Resources, Mines and Energy Branch Report of Activities, 6369.Google Scholar
Kontak, D. J., Kerrich, R.& Strong, D. F. 1988b. Crystal-melt-fluid phase equilibria versus late-stage fluid-rock interaction in grannitoid rocks of the South Mountain Batholith, Nova Scotia: whole rock geochemistry and oxygen isotope evidence. Atlantic Geology 24, 97110.Google Scholar
Kontak, D. J., Smith, P. K., Kerrich, R.& Williams, P. F. 1990. Integrated model for Meguma Group lode gold deposits, Nova Scotia Canada. Geology 18, 238–42.Google Scholar
Kontak, D. J., Horne, R. J.& Smith, P. K. 1996. Hydrothermal characterization of the West Gore Sb-Au deposit, Meguma Terrane, Nova Scotia, Canada. Economic Geology 91, 1239–62.Google Scholar
Kontak, D. J., Horne, R. J.& Ansdell, K. 1999a. Results of mineral deposit studies at the granite-hosted Dunbrack (Zn–Pb–Cu–Ag) and Kinsac (Ba–F) localities, central Meguma Terrane, Nova Scotia; possible implications for Carboniferous Zn–Pb–Cu–Ag–Ba–F metallogeny in the Meguma. Atlantic Geology 34, 66–7.Google Scholar
Kontak, D. J., Ansdell, K.& Archibald, D. A. 1999b. Carboniferous barite-fluorite mineralization in the Late Devonian Kinsac pluton, southern Nova Scotia. Atlantic Geology 35, 109–27.Google Scholar
Kontak, D. J., Ansdell, K. Dostal, J. Halter, W. Martin, R.& Williams-Jones, A. E. 2001. The nature and origin of pegmatite in a fluorine-rich leucogranite, East Kemptville, Nova Scotia, Canada. Transactions of the Royal Society of Edinburgh, Earth Sciences (in press).Google Scholar
Kontak, D. J.& Kerrich, R. 1995. Geological and geochemical studies of a metaturbidite-hosted Lode gold deposit: the Beaver Dam deposit, Nova Scotia: II. Isotopic studies. Economic Geology 90, 885901.Google Scholar
Kontak, D. J.& Smith, P. K. 1989. Fluid inclusion studies of quartz vein polytypes from the Beaver Dam and Caribou gold deposits, Meguma Zone, Nova Scotia. Nova Scotia Department of Natural Resources, Mines and Energy Branch Report of Activities.Google Scholar
Lagache, M.& Weisbrod, A. 1977. The system: two alkali feldspars–KCl–NaCl–H2O at moderate to high temperatures and low pressures. Contributions to Mineralogy and Petrology 62, 77101.Google Scholar
Linnen, R. L. 1998. Depth of emplacement, fluid provenance and metallogeny in granitic terranes: a comparison of western Thailand with other tin belts. Mineralium Deposita 33, 461–76.Google Scholar
Logothetis, J. 1985. The mineralogy and geochemistry of metasomatized granitoid rocks from occurrences in the South Mountain Batholith: New Ross area. Southwestern Nova Scotia (Unpublished M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
MacDonald, M. A. in press. Geology of the South Mountain Batholith, Nova Scotia. Nova Scotia Department of Natural Resources Open File Report.Google Scholar
MacDonald, M. A., Horne, R. J., Corey, M. C.& Ham, L. J. 1992. An overview of recent bedrock mapping and follow-up petrological studies of the South Mountain Batholith, Southwestern Nova Scotia Canada. Atlantic Geology 28, 728.Google Scholar
Mahoney, K. L. 1996. The contact metomorphic aureole of the South Mountain Batholith, Nova Scotia. (Unpublished M.Sc., Acadia University, Wolfville, Nova Scotia).Google Scholar
Mahoney, K. L.& Raeside, R. P. 1995. The contact aureole of the South Mountain Batholith, southern Nova Scotia. Program and Summaries, 19th Annual Review of Activities, Nova Scotia Department of Natural Resources Report 95–2, 60.Google Scholar
Martel, A. T.& Gibling, M. R. 1995. Stratigraphy and tectonic history of the Upper Devonian to Lower Carboniferous Horton Bluff Formation, Nova Scotia. Atlantic Geology 32, 1338.Google Scholar
Martel, A. T., Gregor, D. C. M.& Utting, J. 1993. Stratigraphic significance of Upper Devonian and Lower Carboniferous miospores from the type area of the Horton Group, Nova Scotia. Canadian Journal of Earth Sciences 30, 1091–8.Google Scholar
McKenzic, C. B. 1974. Petrology of the South Mountain Batholith, western Nova Scotia (Unpublished M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
Murphy, J. B., Van, Stall C. R.& Keppie, J. D. 1999. Middle to late Paleozoic Acadian orogeny in the northern Appalachians: a Laramide-style plume-modified orogeny? Geology 27, 653–6.Google Scholar
Oakes, C. S., Bodnar, R. J.& Simonson, J. M. 1990. The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta 54, 603–10.Google Scholar
O'Reilly, C. 1975. Gravitational interpretation and modeling of the South Mountain Batholith utilizing 2 and 3 dimensional computer programming (Unpublished B.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia).Google Scholar
O'Reilly, G. A. 1992. Petrographic and geochemical evidence for a hypogene origin of granite-hosted, vein-type Mn mineralization at the New Ross Mn deposits, Lunenburg County, Nova Scotia, Canada. Economic Geology 87, 1275–300.Google Scholar
O'Reilly, G. A., Farley, E. J.& Charest, M. H. 1982. Metasomatic-hydrothermal mineral deposits of the New Ross Mahone Bay area, Nova Scotia. Nova Scotia Department of Mines and Energy, Paper 82–2.Google Scholar
Orville, P. M. 1963. Alkali ion exchange between vapor and feldspar phases. American Journal of Science 261, 201–37.Google Scholar
Reynolds, P. H., Zentilli, M.& Muecke, G. K. 1981. K–Ar and Ar/Ar geochronology of granitoid rocks from Southern Nova Scotia: its bearing on the geological evolution of the Meguma Zone of the Appalachians. Journal of Earth Sciences 18, 386–94.Google Scholar
Reynolds, P. H., Elias, P. Muecke, G. K.& Grist, A. M. 1987. Thermal history of the southwestern Meguma Zone, Nova Scotia, from an 40Ar/39Ar and fission track dating study of instrusive rocks. Canadian Journal of Earth Sciences 24, 1952–65.Google Scholar
Roedder, E. 1984. Fluid inclusions. Review in Mineralogy 12. Washington D.C.: Mineralogical Society of America.Google Scholar
Roedder, E.& Bodnar, R. J. 1997. Fluid inclusion studies of hydrothermal ore deposits. In Barnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits, 657–97. New York: John Wiley.Google Scholar
Savard, M. M.& Chi, G. 1998. Cation study of fluid inclusion decrepitates in the Jubilee and Gays River (Canada) Zn–Pb deposits—Characterization of ore-forming brines. Economic Geology 93, 920–31.Google Scholar
Schenk, P. E. 1995. Meguma Zone. In Williams, H. (ed.) Geology of the Appalachian-Caledonian orogen in Canada and Greenland. Geological Society of America F–1, 261–77.Google Scholar
Slipp, R. M. 1946. Molybdenite at New Russell. Nova Scotia Department of Mines, Annual Report, 107-12.Google Scholar
Sterner, S. M., Hall, D. L.& Bodnar, R. J. 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCI–H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta 52, 9891005.Google Scholar
Sterner, S. M.& Bodnar, R. J. 1989. Synthetic fluid inclusions. VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated mctamorphic burial and uplift. Journal of Metamorphic Geology 7, 243–60.Google Scholar
Tate, M. J. C., Clarke, D. B.& Heaman, L. M. 1997. Progressive hybridisation between Late Devonian mafic-intermediate and felsic magmas in the Meguma Zone of Nova Scotia, Canada. Contributions to Mineralogy and Petrology 126, 401–15.Google Scholar
Tucker, R. D., Bradley, D. C., Straeten, C. A. V., Harris, A. G., Ebert, J. R.& McCutcheon, S. R. 1998. New U-Pb zircon ages and the duration and division of Devonian time. Earth and Planetary Science Letters 158, 175–86.Google Scholar
Weeks, L. J. 1945. Manganese, New Ross. Nova Scotia Department of Mines, Annual Report, 135-66.Google Scholar