Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T09:37:57.802Z Has data issue: false hasContentIssue false

Granitic batholiths: from pervasive and continuous melting in the lower crust to discontinuous and spaced plutonism in the upper crust

Published online by Cambridge University Press:  11 January 2017

Jean Louis Vigneresse*
Affiliation:
Nancy Université, UMR CNRS 7566 G2R, BP 23, Vandoeuvre-les-Nancy Cedex, F-54501, France, e-mail: jean-louis.vigneresse@g2r.uhp-nancy.fr

Abstract

The generation of granitic magmas begins with melting in the lower crust, under active participation of the underlying mantle. Thermally driven, melting is a pervasive and continuous process that develops over a wide region. In contrast, the building of a granitic pluton is highly discontinuous in time and space. Several inputs of magma, sometimes with a different chemical compositions, are focused toward a region where they accumulate, forming a large pluton, often separated by some 50 km from an adjacent one. The switch from a continuous to a discontinuous process represents a fundamental point of magma generation. It gives place to the modified model m(M-SAE), in which the mantle (m) and Melting (M) are separated from the Segregation (S), Ascent (A) and Emplacement (E) modes. Discontinuities result from non-linear processes that develop during segregation and ascent of the magma. They rely on the non-linear rheology of partially molten rocks. Thresholds control the change from a solid-like to liquid-like behaviour of the magma. In between, the rheology exhibits sudden jumps between states. Because two phases continuously coexist (matrix and melt), strain is highly partitioned between them. This may induce highly discontinuous melt segregation, which needs both pure and simple shear to develop. Melt focusing is controlled by the viscosity contrast between the two phases. It gives rise to different compaction lengths depending on the region, a partially melting source or a nearly brittle crust, where it develops. Because ascent and emplacement are discontinuous in time, this allows the crust to relax, avoiding the room problem for a pluton intruding the upper crust. Intermediate magma chambers could develop with different temperature and magma composition. They could be the place of enhanced magma mixing. Finally, the stress conditions, which differ for each tectonic setting, influence the shape of the granitic body.

Type
Research Article
Copyright
Copyright © The Royal Society of Edinburgh 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P., Nadim, A. & Brenner, H. 1990. Rheological modeis of suspensions. Advances in Chemical Engineering 15, 1-67.CrossRefGoogle Scholar
Allen, C.M. 1992. A nested diapir model for the reversely zoned Turtle Pluton, southeastern California. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 179-90.CrossRefGoogle Scholar
Annen, C. & Sparks, R.S.J. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters 203, 937-55.CrossRefGoogle Scholar
Arzi, A.A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173-84.CrossRefGoogle Scholar
Ayuso, R.A. 1984. Field relations, crystallization and petrology of reversely zoned granitic plutons in the Bottle Lake complex, Maine. USGS Professional Paper 1320, 1-58.Google Scholar
Bacon, C.R. 1986. Magmatic inclusions in silicic and intermediate volcanic-rocks. Journal of Geophysical Research B91, 6091-112.CrossRefGoogle Scholar
Barbarin, B. & Didier, J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 145-53.CrossRefGoogle Scholar
Barnes, H.A. 1997. Thixotropy-A review. Journal of Non Newtonian Fluid Mechanics 70, 1-33.CrossRefGoogle Scholar
Barraud, J., Gardien, V., Allemand, P. & Grandjean, P. 2001. Analog modelling of melt segregation and migration during deformation. Physics and Chemistry of the Earth A26, 317-23.CrossRefGoogle Scholar
Barraud, J., Gardien, V., Allemand, P. & Grandjean, P. 2004. Analogue models of melt-flow networks in folding migmatites. Journal of Structural Geology 26, 307-24.CrossRefGoogle Scholar
Bauer, P., Rosenberg, C.L. & Handy, M.R. 2000. ‘See-through’ deformation experiments on brittle-viscous norcamphor at controlled temperature, strain rate and applied confining pressure. Journal of Structural Geology 22, 281-9.CrossRefGoogle Scholar
Beard, J.S. Ragland, P.C. & Crawford, M.L. 2005. Reactive bulk assimilation: A model for crust-mantle mixing in silicic magmas. Geology 33, 681-4.CrossRefGoogle Scholar
Bergantz, G.W. 1989. Underplating and partial melting: Implications for melt generation and extraction. Science 245, 1093-5.CrossRefGoogle ScholarPubMed
Bons, P.D., Dougherty-Page, J. & Elburg, M.A. 2001. Stepwise accumulation and ascent of magmas. Journal of Metamorphic Geology 19, 627-33.CrossRefGoogle Scholar
Bons, P.D., Arnold, J., Elburg, M.A., Kalda, J., Soesoo, A. & van Milligen, B.P. 2004. Melt extraction and accumulation from partially molten rocks. Lithos 78, 25-42.CrossRefGoogle Scholar
Bouchez, J.L. 1997. Granite is never isotropic: an introduction to AIMS studies of granitic rocks. In Bouchez, J.L., Hutton, D.H.W. & Stephens, W.E. (eds) Granite: from Segregation of Melt to Emplacement Fabrics, 95-112. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bourne, J. & Danis, D. 1987. A proposed model for the formation of reversely zoned plutons based on a study of the Lacorne complex, Superior Province, Quebec. Canadian Journal of Earth Sciences 24, 2506-20.CrossRefGoogle Scholar
Brown, M., Averkin, Y.A., McLellan, E.L. & Sawyer, E.W. 1995. Melt segregation in migmatites. Journal of Geophysical Research B100, 15655-80.CrossRefGoogle Scholar
Burg, J.P. & Vigneresse, J.L. 2002. Non-linear feedback loops in the rheology of cooling-crystallising felsic magma and heating-melting felsic rock. In De Meer, S., Drury, M.R., De Bresser, J.H.P. & Pennock, G.M. (eds) Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geological Society, London, Special Publication 200, 275-92.Google Scholar
Burg, J.P. 1999. Ductile structures and instabilities: their implication for Variscan tectonics in the Ardennes. Tectonophysics 309, 1-25.CrossRefGoogle Scholar
Cashman, K.V. & Bergantz, G.W. 1991. Magmatic processes. Reviews of Geophysics 29, 500-12.CrossRefGoogle Scholar
Castro, A. 2004. The source of granites: inferences from the Lewisian complex. Scottish Journal of Geology 40, 49-65.CrossRefGoogle Scholar
Castro, A., Moreno Ventas, I. & De la Rosa, J. 1991. H-type (hybrid) granitoids: a proposed revision of the granite type classification. Earth Science Reviews 31, 237-53.CrossRefGoogle Scholar
Castro, A., Corretgé, L. G., El-Biad, M., El-Hmidi, H., Fernadez, C. & Patiño Douce, A.E. 1999. Experimental constraints on Hercy-nian anatexis in the Iberian Massif, Spain. Journal of Petrology 41, 1471-88.CrossRefGoogle Scholar
Chappell, B.W. 1996. Compositional variation within granite suites of the Lachlan Fold Belt: its causes and implications for the physical state of granite magma. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 159-70.CrossRefGoogle Scholar
Chappell, B. W„ White, A.J.R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology 28, 1111-38.CrossRefGoogle Scholar
Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R. & Williams, I. S. 1998. High and low-temperature I-type granites. Resource Geology 48, 225-35.CrossRefGoogle Scholar
Chappell, B.W. & White, A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48, 489-99.CrossRefGoogle Scholar
Clemens, J.D. 1990. The granulite - granite connexion. In Vielzeuf, D. & Vidal, P. (eds) Granulite and Crustal Evolution. NATO ASI series C311, 25-36. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Clemens, J.D. & Petford, N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Journal of the Geological Society, London 156, 1057-60.CrossRefGoogle Scholar
Coleman, D.S., Gray, W. & Glazner, A.F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologie evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433-6.CrossRefGoogle Scholar
Collins, W.J. 1996. Lachlan Fold Belt granitoids: products of three-component mixing. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 171-81.CrossRefGoogle Scholar
Crank, J. 1975. The Mathematics of Diffusion. Oxford: Oxford University Press.Google Scholar
Cruden, A.R. 1998. On the emplacement of tabular granites. Journal of the Geological Society, London 155, 853-62.Google Scholar
Dingwell, D.B., Bagdassarov, N.S., Bussod, N.S. & Webb, S.L. 1993. Magma rheology. In Luth, R.W. (ed.) Experiments at High Pressure and Applications to the Earth’s Mantle, 131-96. Nepean, Ontario: Mineralogical Association of Canada.Google Scholar
Einstein, A. 1906. Eine neue Bestimmung der Molekul-dimensionnen. Annales de Physique 19, 289-306.CrossRefGoogle Scholar
Flinn, D. 1962. On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society of London 118, 385-433.CrossRefGoogle Scholar
Furman, T. & Spera, F.J. 1985. Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of an unusual dike complex at Eagle Lake, Sequoia National Park, California, USA. Journal of Volcanology and Geothermal Resources 24, 151-78.CrossRefGoogle Scholar
Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W. & Taylor, R.Z. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4-11.2.0.CO;2>CrossRefGoogle Scholar
Goodwin, L.B. & Tikoff, B. 2002. Competency contrast, kinematics. and the development of foliations and lineations in the crust. Journal of Structural Geology 24, 1065-85.CrossRefGoogle Scholar
Guéguen, Y. & Palciauskas, V. 1992. Introduction à la Physique des Roches. Paris: Hermann.Google Scholar
Guineberteau, B., Bouchez, J.L. & Vigneresse, J.L. 1987. The Mortagne granite pluton (France) emplaced by pull apart along a shear zone: structural and gravimetric arguments and regional implication. Geological Society of American Bulletin 99, 763-70.2.0.CO;2>CrossRefGoogle Scholar
Guyon, E., Roux, S., Hansen, A., Bideau, D., Troadec, J.P. & Crapo, H. 1990. Non-local and non-linear problems in the mechanics of disordered systems: application to granular media and rigidity problems. Reports on Progress in Physics 53, 373-419.CrossRefGoogle Scholar
Harlov, D.E. 2002. Review of pétrographic and mineralogical evidence for fluid induced dehydration of amphibolite facies to granulite facies rocks. Zeitschrift für Geologische Wissenschaften 30, 13-36.Google Scholar
Harris, N., Ayers, M. & Massey, J. 1995. Geochemistry of granitic-melts produced during incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research B100, 15767-77.CrossRefGoogle Scholar
Hecht, L. & Vigneresse, J.L. 1999. A multidisciplinary approach combining geochemical, gravity and structural data: implications for pluton emplacement and zonation. In Castro, A., Fernandez, C. Vigneresse, J.L. (eds) Understanding Ggranites: Integrating New and Classical Techniques. Geological Society, London, Special Publication 168, 95-110.Google Scholar
Hildreth, E.W. & Moorbath, S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 76, 177-95.Google Scholar
Hogan, J.P. & Gilbert, M.C. 1995. The A-type Mount Scott Granite sheet: Importance of crustal magma traps. Journal of Geophysical Research B100, 15779-92.CrossRefGoogle Scholar
Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., Heidelbach, F., Hiraga, T. & Hustoft, J. 2003. Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301, 1227-30.CrossRefGoogle ScholarPubMed
Hutton, D.H.W. 1982, A tectonic model for the emplacement of the main Donegal granite, NW Ireland. Journal of the Geological Society London 139, 615-31.CrossRefGoogle Scholar
Ingebritsen, S.E. & Manning, C.E. 1999. Geological implications of a permeability-depth curve for the continental crust. Geology 27, 1107-10.2.3.CO;2>CrossRefGoogle Scholar
Ishihara, K. 1993. Liquefaction and flow failure during earthquakes. Géotechnique 43, 351-415.CrossRefGoogle Scholar
Ji, S.C. & Xia, B. 2002. Rheology of Polyphase Earth Materials Montreal: Polytechnic International Press.Google Scholar
Johannes, W. & Koepke, J. 2001. Incomplete reaction of plagioclase in experimental dehydration melting of amphibole. Australian Journal of Earth Sciences 48, 581-90.CrossRefGoogle Scholar
Jones, R.R., Holdsworth, R.E., McCaffrey, K.J.W. , Clegg, P. & Tavarnelli, E. 2005. Scale dependence, strain compatibility and heterogeneity of three-dimensional deformation during mountain building: a discussion. Journal of Structural Geology 27, 1190-204.CrossRefGoogle Scholar
Jones, R.R. & Tanner, P.W.G. 1995. Strain partitioning in transpression zones. Journal of Structural Geology 17, 793-802.CrossRefGoogle Scholar
Kirby, S.H. & Kronenberg, A.K. 1987. Rheology of the lithosphère: Selected topics. Reviews of Geophysics 25, 1219-44.CrossRefGoogle Scholar
Kohlstedt, D.L., Bai, Q, Wand, Z.C. & Mei, S. 2000. Rheology of partially molten rocks. In Bagdassarov, N, Laporte, D. & Thompson, A.B. (eds) Physics and Chemistry of Partially Molten Rocks, 3-28. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Krieger, I.M. & Dougherty, T.J. 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology 3, 137-52.CrossRefGoogle Scholar
Lejeune, A.M. & Richet, P. 1995. Rheology of crystal-bearing silicate melts: an experimental study of high viscosities. Journal of Geophysical Research B100, 4215-29.CrossRefGoogle Scholar
Maaløe, S. & Scheie, A. 1982. The permeability controlled accumulation of primary magma. Contributions to Mineralogy and Petrology 81, 350-7.CrossRefGoogle Scholar
Martin, R. F. & Piwinskii, A.J. 1972. Magmatism and tectonic setting. Journal of Geophysical Research 11, 4966-75.CrossRefGoogle Scholar
McCaffrey, K.J.W. & Petford, N. 1997. Are granitic intrusions scale invariant? Journal of the Geological Society, London 154, 1-4.CrossRefGoogle Scholar
McKenzie, D. 1984. The generation and compaction of partially molten rock. Journal of Petrology 25, 713-65.CrossRefGoogle Scholar
Mcnhert, K.R. 1968. Migmatites and the Origin of Granitic Rocks. Amsterdam: Elsevier.Google Scholar
Miller, C. F., Meschter McDowell, S. & Mapes, R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529-32.2.0.CO;2>CrossRefGoogle Scholar
Neves, S.P., Vauchez, A. & Archanjo, C.J. 1996. Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil. Tectonophysics 262, 349-64.CrossRefGoogle Scholar
Olmsted, P.D. 1999. Two-state shear diagrams for complex fluids in shear flow. Europhysics Letters 48, 339-45.CrossRefGoogle Scholar
Patiño Douce, A.E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas. In Castro, A., Fernandez, C. & Vigneresse, J.L. (eds) Understanding granites: Integrating New and Classical techniques. Geological Society, London, Special Publication 168, 55-75.Google Scholar
Patiño Douce, A.E. & Beard, J.S. 1995. Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 96, 707-38.CrossRefGoogle Scholar
Patiño Douce, A.E. & Harris, N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology 39, 689-710.CrossRefGoogle Scholar
Patiño Douce, A.E. & Johnston, A.D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous silicates. Contributions to Mineralogy and Petrology 107, 202-18.CrossRefGoogle Scholar
Petford, N. 2003. Rheology of granitic magmas during ascent and emplacement. Annual Review of Earth and Planetary Sciences 31, 399-427.CrossRefGoogle Scholar
Petford, N. Clemens, J.D. & Vigneresse, J.L. 1997. Application of information theory to the formation of granitic rocks. In Bouchez, J.L.. Hutton, D. & Stephens, W.E. (eds) Granite: from Melt Segregation to Emplacement Fabrics, 3-10. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Petford, N., Cruden, A.R., McCaffrey, K.J.W. & Vigneresse, J.L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408, 669-73.CrossRefGoogle ScholarPubMed
Petford, N. & Gallagher, K. 2001. Partial melting of mafic (amphib-olitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters 193, 483-99.CrossRefGoogle Scholar
Pitcher, W. 1979. The nature, ascent and emplacement of granitic magmas. Journal of the Geological Society, London 136, 627-62.CrossRefGoogle Scholar
Pitcher, W.S. 1987. Granites and yet more granites forty years on. Geologische Rundschau 76, 51-79.CrossRefGoogle Scholar
Pitcher, W.S. 1993. The nature and origin of granite. London: Chapman & Hall.CrossRefGoogle Scholar
Pitcher, W.S. Atherton, M.P., Cobbing, E.J. & Beckinsale, R.D. 1985. Magmatism at a Plate Edge: The Peruvian Andes. Glasgow: Blackie.CrossRefGoogle Scholar
Pitcher, W.S. & Hutton, D.H.W. 1982. Discussion on a tectonic model for the emplacement of the Main Donegal Granite N.W. Ireland: Journal of the Geological Society, London 141, 599-602.Google Scholar
Pollard, D.D. & Muller, O.H. 1976. The effect of gradients in regional stress and magma pressure on the form of sheet intrusions in cross section. Journal of Geophysical Research B81, 975-84.CrossRefGoogle Scholar
Pons, J., Barbey, P., Dupuis, D. & Léger, J.M. 1995. Mechanisms of pluton emplacement and structural evolution of a 2-1 Ga juvenile continental crust: the Birimian of southwestern Niger. Precam-brian Research 70, 281-301.CrossRefGoogle Scholar
Rabinowicz, M., Genthon, P., Ceuleneer, G. & Hillairet, M. 2001. Compaction in a mantle mush with high melt concentrations and the generation of magma chambers. Earth and Planetary Science Letters 188, 313-28.CrossRefGoogle Scholar
Rabinowicz, M. & Vigneresse, J.L. 2004. Melt segregation under compaction and shear channelling: Application to granitic magma segregation in a continental crust. Journal of Geophysical Research B109, 10.1029/2002JB002372.Google Scholar
Rapp, R.P. 1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. Journal of Geophysical Research B100, 15601-10.CrossRefGoogle Scholar
Rapp, R.P. & Watson, E.B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891-931.CrossRefGoogle Scholar
Read, H.H. 1957. The granite controversy. London: Thomas Murby and Co. CrossRefGoogle Scholar
Renner, J., Evans, B. & Hirth, G. 2000. On the Theologically critical melt fraction. Earth and Planetary Science Letters 181, 585-94.CrossRefGoogle Scholar
Roberts, M.P. & Clemens, J.D. 1995. Feasability of AFC models for the petrogenesis of calc-alkaline magma series. Contributions to Mineralogy and Petrology 121, 139-47.CrossRefGoogle Scholar
Roscoe, R. 1952. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics 3, 267-9.CrossRefGoogle Scholar
Rosenberg, C.L. 2001. Deformation of partially-molten granite: A review and comparison of experimental and natural case studies. International Journal of Earth Sciences 90, 60-76.CrossRefGoogle Scholar
Rosenberg, C.L. & Handy, M.R. 2000. Syntectonic melt pathways during simple shearing of a partially molten rock analogue (Norcamphor Benzamide). Journal of Geophysical Research B105, 3135-19.CrossRefGoogle Scholar
Rosenberg, C.L. & Handy, M.R. 2001. Mechanisms and orientation of melt segregation paths during pure shearing of a partially molten rock analog (norcamphor-benzamide). Journal of Structural Geology 23, 1917-32.CrossRefGoogle Scholar
Rosenberg, C.L. & Handy, M.R. 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology 23, 19-28.CrossRefGoogle Scholar
Rutter, E.H. & Neumann, D.H.K. 1995. Experimental deformation of partially molten Westerly granite under fluid-absent conditions with implications for the extraction of granitic magmas. Journal of Geophysical Research B100, 15697-716.CrossRefGoogle Scholar
Stephens, W.E. 1992. Spatial, compositional and rheological constraints on the origin of zoning in the Criffel pluton Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 191-9.CrossRefGoogle Scholar
Stevenson, D.J. 1989. Spontaneous small scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters 16, 1067-70.CrossRefGoogle Scholar
Taylor, S.R. & McLennan, S.M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241-65.CrossRefGoogle Scholar
Thorn, R. 1980. Modèles Mathématiques de la Morphogénèse. Paris: Christian Bourgeois.Google Scholar
Thompson, A.B. 1999. Some time-space relationships for crustal melting and granitic intrusion at various depths. In Castro, A., Fernandez, C. & Vigneresse, J.L. (eds) Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publication 168, 7-25.Google Scholar
Vernon, R.H. 1990. Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. Journal of Geophysical Research B95, 17849-59.CrossRefGoogle Scholar
Vigneresse, J.L. 2004. Toward a new paradigm for granite generation. Transactions of the Royal Society of Edinburgh: Earth Sciences 95, 11-22.CrossRefGoogle Scholar
Vigneresse, J.L., Barbey, P. & Cuney, M. 1996. Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer. Journal of Petrology 37, 1579-600.CrossRefGoogle Scholar
Vigneresse, J.L., Tikoff, B. & Améglio, L. 1999. Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 302, 203-24.CrossRefGoogle Scholar
Vigneresse, J.L. & Burg, J.P. 2000. Continuous versus discontinuous melt segregation in migmatites: insights from a cellular automaton model. Terra Nova 12, 188-92.CrossRefGoogle Scholar
Vigneresse, J.L. & Burg, J.P. 2004. Some insights on the rheology of partially molten rocks. In Grocott, J., McCaffrey, K., Taylor, G. & Tikoff, B. (eds) Vertical Coupling and Decoupling in the Lithosphère. Geological Society, London, Special Publication 272, 327-36.CrossRefGoogle Scholar
Vigneresse, J.L. & Burg, J.P. 2005. Simulation of crustal melt segregation through cellular automata: Insight on steady and non-steady state effects under deformation. Pageoph 162, 987-1011.CrossRefGoogle Scholar
Vigneresse, J.L. & Tikoff, B. 1999. Strain partitioning during partial melting and crystallizing felsic magmas. Tectonophysics 312, 117-32.CrossRefGoogle Scholar
Wall, V.J., Clemens, J.D. & Clarke, D.B. 1987. Models for granitoid evolution and source compositions. Journal of Geology 95, 731-49.CrossRefGoogle Scholar
Walte, N.P., Bons, P.D. & Passchier, C.W. 2005. Deformation of melt-bearing systems - insight from in situ grain-scale analogue experiments. Journal of Structural Geology 27, 1666-79.CrossRefGoogle Scholar
Weaver, B.L. & Tarney, J. 1980. Continental crust composition and nature of the lower crust: constraints from mantle Nd-Sr isotope correlation. Nature 286, 342-6.CrossRefGoogle Scholar
Webb, S.L. & Dingwell, D.B. 1990. Non-Newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt and nephelinite. Journal of Geophysical Research B95, 15695-701.CrossRefGoogle Scholar
Weinberg, R.F., Sial, A.N. & Pessoa, R.R. 2001. Magma flow within the Tavares pluton, northeast Brazil: Compositional and thermal convection. Geological Society of America Bulletin 113, 508-20.2.0.CO;2>CrossRefGoogle Scholar
Whitney, J.A. 1990. Origin and evolution of silicic magmas. Reviews in Economic Geology 4, 183-201.Google Scholar
Williams, P.F. 1990. Differentiated layering in metamorphic rocks. Earth-Science Reviews 29, 267-81.CrossRefGoogle Scholar
Yoshinobu, A.S. & Hirth, G. 2002. Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers. Journal of Structural Geology 24, 1101-7.CrossRefGoogle Scholar