Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T08:30:07.635Z Has data issue: false hasContentIssue false

Lherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel

Published online by Cambridge University Press:  03 November 2011

R. L. Hervig
Affiliation:
Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637, U.S.A.
J. V. Smith
Affiliation:
Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637, U.S.A.
J. B. Dawson
Affiliation:
Department of Geology, University of Sheffield, Sheffield, England SI 3JD.

Abstract

Electron and ion microprobe analyses for P, Si, Ti, Al, Cr, V, Sc, Fe, Mn, Mg, Ni, Co, Ca, Sr, Na, K and Li in olivine, pyroxenes and garnet in forty-two cold and twelve hot garnet lherzolites from kimberlites, nine spinel lherzolites from kimberlites and eighteen from alkali basalts, and one cold garnet lherzolite from the Malaita alnöite, are compared with published data for minerals occurring in lherzolite, harzburgite and eclogite xenoliths, for silicate megacrysts in kimberlites, and for silicate inclusions in diamonds. Despite wide ranges in the chemistry of minerals from garnet and spinel lherzolites, there are distinct regions in composition space that would enable determination of the parent lithology of disaggregated minerals in kimberlites and alkali basalts. Titanium correlates with Fe3+ in garnets. Chromium, Al, V and Sc are distributed similarly between silicates in lherzolites. Sodium correlates with trivalent ions in olivine, and increases with temperature. The distribution of Na, but not of K and Li, between olivine and clinopyroxene correlates with temperature. The regular partitioning of Ti, Mn and Ni places constraints on crystal-liquid partition coefficients. Above the stability temperature of mica, ‘metasomatising fluids’ may scavenge Cr and other trivalent ions as they increase Ti in silicates.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R. D. & Rossman, G. R. 1984. The hydrous component in garnets: pyralspites. AM MINERAL 69, 1116–26.Google Scholar
Arculus, R. J., Dawson, J. B., Mitchell, R. H., Gust, D. A. & Holmes, R. D. 1984. Oxidation states of the upper mantle recorded by megacryst ilmenite in kimberlite and type A and B spinel lherzolites. CONTRIB MINERAL PETROL 85, 8594.CrossRefGoogle Scholar
Armstrong, R. L. 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental growth Earth. PHIL TRANS R SOC LONDON A301, 443–72.Google Scholar
Bailey, D. K. 1980. Volcanism, earth degassing and replenished lithosphere mantle. PHIL TRANS R SOC LONDON A297, 309–22.Google Scholar
Bailey, D. K., Tarney, J. & Dunham, K. (eds) 1980. The evidence for chemical heterogeneity in the Earth's mantle. PHIL TRANS R SOC LONDON A297, 135493.Google Scholar
Barrett, D. R. 1975. The genesis of kimberlites and associated rocks: strontium isotopic evidence. PHYS CHEM EARTH 9, 637–53.CrossRefGoogle Scholar
Basu, A. R. 1979. Geochemistry of ultramafic xenoliths from San Quintin, Baja California, PROC SECOND INT KIMBERLITE CONF 2, 391–99.Google Scholar
Berger, E. T. & Vannier, M. 1984. Petrology of megacrysts, mafic and ultramafic xenoliths from the pipe of Eglazines, Causses, France. DEVELOP PETROL 11A, 155168. ANN SCI UNIV CLERMONT–FERRAND II 74, 129–35.CrossRefGoogle Scholar
Bershov, L., Gaite, J-M., Hafner, S. S. & Rager, H. 1983. Electron paramagnetic resonance and ENDOR studies of Cr3+–Al3+ pairs in forsterite. PHYS CHEM MINERAL 9, 95101.CrossRefGoogle Scholar
Bishop, F. C., Smith, J. V. & Dawson, J. B. 1978. Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites. LITHOS 11, 155–73.CrossRefGoogle Scholar
Boctor, N. Z. & Boyd, F. R. 1982. Petrology of kimberlite from the DeBruyn and Martin mine, Bellsbank, South Africa. AM MINERAL 67, 917–23.Google Scholar
Boettcher, A. L. & O'Neill, J. R. 1980. Stable isotope, chemical and petrographic studies of high pressure amphiboles and micas. Evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. AM J SCI 280–A, 594621.Google Scholar
Bougault, H., Joron, J. L. & Treuil, M. 1980. The primordial chondrite nature and large-scale heterogeneities in the mantle: evidence from high and low partition coefficient elements in oceanic basalts. PHIL TRANS R SOC LONDON A297, 203–13.Google Scholar
Boyd, F. R. & Gurney, J. J. 1982. Low-calcium garnets: keys to craton structure and diamond crystallization. CARNEGIE INST WASHINGTON YEARB 81, 261–67.Google Scholar
Boyd, F. R. & Nixon, H. 1975. Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery mine, South Africa. PHYS CHEM EARTH 9, 431–54.CrossRefGoogle Scholar
Boyd, F. R., Jones, R. A. & Nixon, H. 1983. Mantle metasomatism: the Kimberley dunites. CARNEGIE INST WASHINGTON YEARB 83, 330–36.Google Scholar
Boyd, F. R., Dawson, J. B. & Smith, J. V. 1984a. Granny Smith diopside megacrysts from the kimberlites of the Kimberley area and Jagersfontein, South Africa. GEOCHIM COSMOCHIM ACTA 48, 381–84.CrossRefGoogle Scholar
Boyd, F. R., Nixon, P. H. & Boctor, N. Z. 1984b. Rapidly crystallized garnet pyroxenite xenoliths possibly related to discrete nodules. CONTRIB MINERAL PETROL 86, 119130.CrossRefGoogle Scholar
Carswell, D. A., Clarke, D. B. & Mitchell, R. H. 1979. The petrology and geochemistry of ultramafic nodules from Pipe 200, northern Lesotho. PROC SECOND INT KIMBERLITE CONF 2, 127–44.Google Scholar
Carswell, D. A., Dawson, J. B. & Gibb, F. G. F. 1981. Equilibration conditions of upper-mantle eclogites: implications for kyanite-bearing and diamondiferous varieties. MINERAL MAG 44, 7989.CrossRefGoogle Scholar
Carswell, D. A., Griffin, W. L. & Kresten, P. 1984. Peridotite nodules from the Ngopetsoeu and Lipelaneng kimberlites, Lesotho: a crustal or mantle origin. DEVELOP PETROL 11B, 229243. ANN SCI UNIV CLERMONT–FERRAND II 74, 164–77.CrossRefGoogle Scholar
Conquéré, F. & Fabriès, J. 1984. Chemical disequilibrium and its thermal significance in spinel-peridotites from the Lherz and Freychinede ultramafic bodies (Ariège, French Pyrenees). DEVELOP PETROL 11B, 319331. ANN SCI UNIV CLERMONT–FERRAND II 74, 55–83.CrossRefGoogle Scholar
Dal Negro, A., Carbonin, S.Domeneghetti, C., Molin, G. M., Cundari, A. & Piccirillo, E. M. 1984. Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia. CONTRIB MINERAL PETROL 86, 221–29.CrossRefGoogle Scholar
Danchin, R. V. 1979. Mineral and bulk chemistry of garnet lherzolite and garnet harzburgite xenoliths from the Premier Mine, South Africa. PROC SECOND INT KIMBERLITE CONF 2, 104–26.Google Scholar
Danchin, R. & Boyd, F. R. 1976. Ultramafic nodules from the Premier kimberlite pipe, South Africa. CARNEGIE INST WASHINGTON YEARB 75, 531–46.Google Scholar
Dawson, J. B. 1980. Kimberlites and their xenoliths. Berlin: Springer.CrossRefGoogle Scholar
Dawson, J. B. 1984. Contrasting types of mantle metasomatism? DEVELOP PETROL 11B, 289–94.CrossRefGoogle Scholar
Dawson, J. B. & Smith, J. V. 1977. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. GEOCHIM COSMOCHIM ACTA 41, 300–23.CrossRefGoogle Scholar
Dawson, J. B. & Stephens, W. E. 1975. Statistical analysis of garnets from kimberlites and associated xenoliths. J GEOL 83, 589607.CrossRefGoogle Scholar
Dawson, J. B. & Stephens, W. E. 1976. Statistical analysis of garnets from kimberlites and associated xenoliths: addendum. J GEOL 84, 495–96.CrossRefGoogle Scholar
Dawson, J. B., Hervig, R. L. & Smith, J. V. 1981. Fertile, iron-rich dunite xenoliths from the Bultfontein kimberlite, S. Africa. FORTSCH MINERAL 59, 303–24.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1982. Rock-forming Minerals, Volume 1A, 2nd edn. Orthosilicates. London: Longman.Google Scholar
Delaney, J. S., Smith, J. V., Carswell, D. A. & Dawson, J. B. 1980. Chemistry of micas from kimberlites and xenoliths—II. Primary- and secondary-textured micas from peridotitic xenoliths. GEOCHIM COSMOCHIM ACTA 44, 857–72.CrossRefGoogle Scholar
Drake, M. J. & Holloway, J. R. 1981. Partitioning of Ni between olivine and silicate melt: the “Henry's law problem” reexamined. GEOCHIM COSMOCHIM ACTA 45, 431–39.CrossRefGoogle Scholar
Drake, M. J. & Holloway, J. R. 1982. Partitioning of Ni between olivine and silicate melt: the “Henry's law problem” reexamined: reply to discussion by B. Mysen. GEOCHIM COSMOCHIM ACTA 46, 299.CrossRefGoogle Scholar
Dupuy, C., Dostal, J., Liotard, J. M. & Leyreloup, A. 1980. Partitioning of transition elements between clinopyroxene and garnet. EARTH PLANET SCI LETT 48, 303–10.CrossRefGoogle Scholar
Eggler, D. H., McCallum, M. E. & Smith, C. B. 1979. Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming. Petrology, geothermometry-barometry, and areal distribution. PROC SECOND INT KIMBERLITE CONF 2, 213–26.Google Scholar
Ehrenberg, S. N. 1982. Petrogenesis of garnet lherzolite and megacrystalline nodules from The Thumb, Navajo volcanic field. J PETROL 23, 507–47.CrossRefGoogle Scholar
Erlank, A. J. 1970. Distribution of potassium in mafic and ultramafic nodules. CARNEGIE INST WASHINGTON YEARB 68, 433–39.Google Scholar
Erlank, A. J. & Shimizu, N. 1977. Strontium and strontium isotope distributions in some kimberlite nodule minerals. EXTENDED ABSTR SECOND INT KIMBERLITE CONF.Google Scholar
Erlank, A. J., Alsopp, H. L., Hawkesworth, C. J. & Menzies, M. A. 1982. Chemical and isotopic characterization of upper mantle metasomatism in peridotite nodules from the Bultfontein kimberlite. TERRA COGNITA 2, 261–63.Google Scholar
Exley, R. A., Smith, J. V. & Hervig, R. L. 1982. Cr-rich spinel and garnet in two peridotite xenoliths from the Frank Smith mine, South Africa. Significance of Al and Cr distribution between spinel and garnet. MINERAL MAG 45, 129–34.CrossRefGoogle Scholar
Exley, R. A., Smith, J. V. & Dawson, J. B. 1983. Alkremite, garnetite and eclogite xenoliths from Bellsbank and Jagersfontein, South Africa. AM MINERAL 68, 512–16.Google Scholar
Fesq, H. W., Kable, E. J. D. & Gurney, J. J. 1976. The geochemistry of some selected South African kimberlites and associated heavy minerals. REP NAT INST METALL SOUTH AFRICA 1703.Google Scholar
Fieremans, M., Hertogen, J. & Demaiffe, D. 1984. Petrography, geochemistry and strontium isotopic composition of the Mbuji-Mayi and Kundelungu kimberlites (Zaire). DEVELOP PETROL 11A, 107–20.CrossRefGoogle Scholar
Finnerty, A. A. & Boyd, F. R. 1984. Evolution of thermobarometers for garnet peridotites. GEOCHIM COSMOCHIM ACTA 48, 1527.CrossRefGoogle Scholar
Frey, F. A. & Prinz, M. 1978. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. EARTH PLANET SCI LETT 38, 129–76.CrossRefGoogle Scholar
Gittins, R., Morgan, D. & Dearnaley, G. 1972. The application of the ion microprobe analyser to the measurement of the distribution of boron ions implanted into silicon crystals. J PHYSICS D APPL PHYS 5, 1654–63.CrossRefGoogle Scholar
Glassley, W. E. & Piper, D. Z. 1978. Cobalt and scandium partitioning versus iron content for crystalline phases in ultramafic nodules. EARTH PLANET SCI LETT 39, 173–78.CrossRefGoogle Scholar
Gurney, J. J. & Boyd, F. R. 1982. Mineral intergrowths with polycrystalline diamonds from the Orapa Mine, Botswana. CARNEGIE INST WASHINGTON YEARB 81, 267–73.Google Scholar
Gurney, J. J. & Harte, B. 1980. Chemical variations in upper mantle nodules from southern African kimberlites. PHIL TRANS R SOC LONDON A297, 273–93.Google Scholar
Gurney, J. J. & Switzer, G. S. 1973. The discovery of garnets closely related to diamonds in the Finsch pipe, South Africa. CONTRIB MINERAL PETROL 39, 103–16.CrossRefGoogle Scholar
Gurney, J. J., Harris, J. W. & Rickard, R. S. 1984a. Silicate and oxide inclusions in diamonds from the Orapa mine, Botswana. DEVELOP PETROL 11B, 39.CrossRefGoogle Scholar
Gurney, J. J.Jakob, W. R. O. & Dawson, J. B. 1979. Megacrysts from the Monastery kimberlite pipe, South Africa. PROC SECOND INT KIMBERLITE CONF 2, 227–43.Google Scholar
Gurney, J. J., Harris, J. W. & Rickard, R. S. 1984b. Minerals associated with diamonds from the Roberts Victor mine. DEVELOP PETROL 11B, 2532.CrossRefGoogle Scholar
Haggerty, S. E. 1976. Opaque mineral oxides in terrestrial igneous rocks. In Rumble, D. (ed.) Oxide Minerals, 101276. Washington, D.C.: Mineralogy Soc. America.Google Scholar
Haggerty, S. E. 1983. The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa. Implications for metasomatism in the upper mantle. GEOCHIM COSMOCHIM ACTA 47, 1833–54.CrossRefGoogle Scholar
Haggerty, S. E., Smyth, J. R., Erlank, A. J., Rickard, R. S. & Danchin, R. 1983. Lindsleyite (Ba) and mathiasite (K): two new chromium titanates in the crichtonite series from the upper mantle. AM MINERAL 68, 494505.Google Scholar
Hart, S. R. & Davis, K. E. 1978. Nickel partitioning between olivine and silicate melt. EARTH PLANET SCI LETT 40, 203–19.CrossRefGoogle Scholar
Harte, B. 1977. Rock nomenclature with particular relation to deformation textures in olivine-bearing xenoliths. J GEOL 85, 279–88.CrossRefGoogle Scholar
Harte, B. 1983. Mantle peridotites and processes—the kimberlite sample. In Hawkesworth, C. J. & Norry, M. J. (eds) Continental Basalts and Mantle Xenoliths, 4691. Nantwich: Shiva Publishing Company.Google Scholar
Harte, B. & Gurney, J. J. 1975a. Evolution of clinopyroxene and garnet in an eclogite nodule from the Roberts Victor kimberlite pipes, South Africa. PHYS CHEM EARTH 9, 367–87.CrossRefGoogle Scholar
Harte, B. & Gurney, J. J. 1975b. Ore mineral and phlogopite mineralization within ultramafic nodules from the Matsoku kimberlite pipe, Lesotho. CARNEGIE INST WASHINGTON YEARB 74, 528–30.Google Scholar
Hatton, C. J. & Gurney, J. J. 1979. Diamond-graphite eclogite from the Roberts Victor mine. PROC SECOND INT KIMBERLITE CONF 2, 2930.Google Scholar
Hawkesworth, C. J., Rogers, N. W., van, Calsteren W. C. & Menzies, M. A. 1984. Mantle enrichment processes. NATURE 311, 331–35.CrossRefGoogle Scholar
Hearn, B. C. Jr., & Boyd, F. R. 1975. Garnet peridotite xenoliths in a Montana, U.S.A., kimberlite. PHYS CHEM EARTH 9, 247–55.CrossRefGoogle Scholar
Hearn, B. C. Jr., & McGee, E. S. 1984. Garnet peridotites from Williams kimberlites, north-central Montana, U.S.A. DEVELOP PETROL 11B, 5770.CrossRefGoogle Scholar
Hervig, R. L. & Smith, J. V. 1980. Sodium thermometer for pyroxenes in garnet and spinel lherzolites. J GEOL 88, 337–42.CrossRefGoogle Scholar
Hervig, R. L. & Smith, J. V. 1982. Temperature-dependent distribution of Cr between olivine and pyroxenes in lherzolite xenoliths. CONTRIB MINERAL PETROL 81, 184–89.CrossRefGoogle Scholar
Hervig, R. L., Smith, J. V., Steele, I. M. & Dawson, J. B. 1980a. Fertile and barren Al-Cr-spinel harzburgites from the upper mantle: ion and electron probe analyses of trace elements in olivine and orthopyroxene: relation to lherzolites. EARTH PLANET SCI LETT 50, 4158.CrossRefGoogle Scholar
Hervig, R. L.Smith, J. V., Steele, I. M., Gurney, J. J., Meyer, H. O. A. & Harris, J. W. 1980b. Diamonds: minor elements in silicate inclusions: pressure-temperature implications. J GEOPHYS RES 85, 6919–29.CrossRefGoogle Scholar
Howie, R. A. 1955. The geochemistry of the charnockite series of Madras, India. TRANS R SOC EDINBURGH 63, 725768.CrossRefGoogle Scholar
Hunter, R. H. & Taylor, L. A. 1984. Magma-mixing in the low velocity zone: kimberlitic megacrysts from Fayette County, Pennsylvania. AM MINERAL 69, 1629.Google Scholar
Irving, A. J. 1978. A review of experimental studies of crystal/liquid trace element partitioning. GEOCHIM COSMOCHIM ACTA 42, 743–70.CrossRefGoogle Scholar
Jagoutz, E., Lorenz, V. & Wänke, H. 1979. Major trace elements of Al-augites and Cr-diopsides from ultramafic nodules in European alkali basalts. PROC SECOND INT KIMBERLITE CONF 2, 382–99.Google Scholar
Jaques, A. L. & Green, D. H. 1979. Determination of liquid compositions in high-pressure melting of peridotite. AM MINERAL 64, 1312–32.Google Scholar
Jones, A., Smith, J. V. & Dawson, J. B. 1982. Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. J GEOL 90, 435–53.CrossRefGoogle Scholar
Kirkley, M. B., McCallum, M. E. & Eggler, D. H. 1984. Coexisting garnet and spinel in upper mantle xenoliths from Colorado-Wyoming kimberlites. DEVELOP PETROLOGY 11B, 8596. ANN SCI UNIV CLERMONT–FERRAND II 74, 149–56.CrossRefGoogle Scholar
Kostrovitskiy, S. I. & Fiveyskaya, L. V. 1983. Geochemical features of olivines from kimberlites. GEOCHEM INTERNAT 20, 4657.Google Scholar
Kramers, J. D. 1977. Lead and strontium isotopes in Cretaceous kimberlites and mantle-derived xenoliths from southern Africa. EARTH PLANET SCI LETT 34, 419–31.CrossRefGoogle Scholar
Kurat, G., Palme, H., Spettel, B.Baddenhausen, H., Hofmeister, H., Palme, C. & Wänke, H. 1980. Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes. GEOCHIM COSMOCHIM ACTA 44, 4560.CrossRefGoogle Scholar
Lappin, M. A. & Dawson, J. B. 1975. Two Roberts Victor cumulate eclogites and their reequillibration. PHYS CHEM EARTH 9, 351–65.CrossRefGoogle Scholar
Laz'ko, Ye. Ye. & Serenko, V. P. 1984. Peridotites with zoned garnet from Yakutian kimberlites. evidence for deep high-temperature metasomatism and mantle diapiristn. INT GEOL REV 26, 318–31.CrossRefGoogle Scholar
Laz'ko, Ye. Ye., Serenko, V. P., Koptil, V. I., Rudintskaya, Ye. S. & Tsepin, A. I. 1982. Diamond-bearing kyanite eclogites from the Sytykanskaya kimberlite pipe, Yakutia. INT GEOL REV 25, 381–94.CrossRefGoogle Scholar
Lindstrom, D. J. & Weill, D. F. 1978, Partitioning of transition metals between diopside and coexisting silicate liquids. I. Nickel, cobalt and manganese. GEOCHIM COSMOCHIM ACTA 42, 817–31.CrossRefGoogle Scholar
Maaløe, S. & Aoki, K. 1977. The major element composition of the upper mantle estimated from the composition of lherzolites. CONTRIB MINERAL PETROL 63, 161–73.CrossRefGoogle Scholar
MacGregor, I. D. 1979. Mafic and ultramafic xenoliths from the Kao kimberlite pipe. PROC SECOND INT KIMBERLITE CONF 2, 156–72.Google Scholar
MacGregor, I. D. & Carter, J. L. 1970. The chemistry of clinopyroxenes and garnets of eclogites and peridotite xenoliths from the Roberts Victor Mine, South Africa. PHYS EARTH PLANET INT 3, 391–97.CrossRefGoogle Scholar
McMahon, B. & Haggerty, S. E. 1984. The Benfontein kimberlite sills: magmatic reactions and high intrusion temperatures. AM J SCI 284, 893941.CrossRefGoogle Scholar
Meyer, H. O. A. & Boyd, F. R. 1972. Composition and origin of crystalline inclusions in diamond. GEOCHIM COSMOCHIM ACTA 36, 1255–73.CrossRefGoogle Scholar
Meyer, H. O. A. & Brookins, D. G. 1971. Eclogite xenoliths from Stockdale kimberlite, Kansas. CONTRIB MINERAL PETROL 34, 6072.CrossRefGoogle Scholar
Meyer, H. O. A. & McCallister, R. H. 1984. Two pyroxene megacrysts from South African kimberlites. DEVELOP PETROL 11B, 133–44.CrossRefGoogle Scholar
Meyer, H. O. A. & Svisero, D. P. 1975. Mineral inclusions in Brazilian diamonds. PHYS CHEM EARTH 9, 785–95.CrossRefGoogle Scholar
Mitchell, R. H. 1984. Garnet lherzolites from the Hanaus-I and Lowrensia kimberlites of Namibia. CONTRIB MINERAL PETROL 86, 178–88.CrossRefGoogle Scholar
Mysen, B. O. 1978. Experimental determination of nickel partition coefficients between liquid, pargasite and garnet peridotite minerals and concentration limits of behavior according to Henry's law at high pressure and temperature. AM J SCI 278, 217–43.CrossRefGoogle Scholar
Mysen, B. 1982. Partitioning of Ni between olivine and silicate melt: the “Henry's law problem” reexamined: discussion. GEOCHIM COSMOCHIM ACTA 46, 297–98.CrossRefGoogle Scholar
Mysen, B. O., & Kushiro, I. 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. AM MINERAL 62, 843–56.Google Scholar
Navon, O. & Stolper, E. M. 1984. The upper mantle as an ion exchange column. GEOL SOC AMER ABSTR PROGR 16, 608.Google Scholar
Nickel, K. G. & Green, D. H. 1984. The nature of the upper-most mantle beneath Victoria, Australia as deduced from ultramafic xenoliths. DEVELOP PETROL 11B, 161–78.CrossRefGoogle Scholar
Nixon, P. H. 1973. (ed.) Lesotho Kimberlites. Maseru, Lesotho: Lesotho National Development Corporation.Google Scholar
Nixon, P. H. & Boyd, F. R. 1979. Garnet bearing lherzolites and discrete nodule suites from the Malaita alnöite, Solomon Islands, S.W. Pacific, and their bearing on oceanic mantle composition and geotherm. PROC SECOND INT KIMBERLITE CONF 2, 400–23.Google Scholar
Nixon, P. H., von, Knorring O. & Rooke, J. M. 1963. Kimberlites and associated inclusions of Basutoland: a mineralogical and geochemical study. AM MINERAL 48, 1090–132.Google Scholar
O'Hara, M. J., Saunders, M. J. & Mercy, E. L. 1975. Garnet-peridotite, primary ultrabasic magma and eclogite: interpretation of upper mantle processes in kimberlite. PHYS CHEM EARTH 9, 571604.CrossRefGoogle Scholar
O'Nions, R K. & Hamilton, P. J. 1981. Isotope and trace element models of crustal evolution. PHIL TRANS R SOC LONDON A301, 473–87.Google Scholar
Ottonello, G., Ernst, W. G. & Joron, J. L. 1984. Rare earth and 3d transition element geochemistry of peridotitic rocks. I. Peridotites from the Western Alps. J PETROL 25, 343–72.CrossRefGoogle Scholar
Pasteris, J. D., Boyd, F. R. & Nixon, P. H. 1979. The ilmenite association at the Frank Smith mine, R.S.A. PROC SECOND INT KIMBERLITE CONF 2, 265–78.Google Scholar
Perkins, D. III, & Newton, R. C. 1980. The composition of coexisting pyroxenes and garnet in the system CaO—MgO—Al2O3—SiO2 at 900–1100°C and high pressure. CONTRIB MINERAL PETROL 75, 291300.CrossRefGoogle Scholar
Perkins, D. III, Holland, T. J. B. & Newton, R. C. 1981. The Al2O3 contents of enstatite in equilibrium with garnet in the system MgO—Al2O3—SiO2 at 15–40 kbar and 900°–1600°C. CONTRIB MINERAL PETROL 78, 99109.CrossRefGoogle Scholar
Prinz, M., Manson, D. V., Hlava, P. F. & Keil, K. 1975. Inclusions in diamonds: garnet lherzolite and eclogite assemblages. PHYS CHEM EARTH 9, 797815.CrossRefGoogle Scholar
Rawlinson, P. & Dawson, J. B. 1979. A quench pyroxene-ilmenite xenolith from kimberlite. implications for pyroxene-ilmenite intergrowths. PROC SECOND INT KIMBERLITE CONF 2, 292–99.Google Scholar
Reid, A. M., Brown, R. W., Dawson, J. B., Whitfield, G. G. & Siebert, J. C. 1976. Garnet and pyroxene compositions in some diamondiferous eclogites. CONTRIB MINERAL PETROL 58, 203–20.CrossRefGoogle Scholar
Ridley, W. I. & Dawson, J. B. 1975. Lithophile trace element data bearing on the origin of peridotite xenoliths, ankaramite and carbonatite from Lashaine volcano, Tanzania. PHYS CHEM EARTH 9, 559–69.CrossRefGoogle Scholar
Ringwood, A. E. 1975. Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill.Google Scholar
Rivers, M. L., Smith, J. V., Steele, I. M., Jones, K. W. & Hanson, A. L. 1984. Fluorine in peridotite and eclogite xenoliths from the mantle. GEOL SOC AM ABSTR PROG 16, 636.Google Scholar
Robinson, D. N., Gurney, J. J. & Shee, S. R. 1984. Diamond eclogite and graphite eclogite xenoliths from Orapa, Botswana. DEVELOP PETROL 11B, 1124.CrossRefGoogle Scholar
Ross, C. S., Foster, M. D. & Myers, A. T. 1954. Origin of dunites and olivine-rich inclusions in basaltic rocks. AM MINERAL 39, 693737.Google Scholar
Sachtleben, Th. & Seek, H. A. 1981. Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. CONTRIB MINERAL PETROL 78, 157–65.CrossRefGoogle Scholar
Schneider, M. E. & Eggler, D. H. 1984. Compositions of fluids in equilibrium with peridotite. Implications for alkaline magmatism-metasomatism. DEVELOP PETROL 11A, 383394.CrossRefGoogle Scholar
Schulze, D. J. 1984. Cr-poor megacrysts from the Hamilton Branch kimberlite, Elliott County, Kentucky. DEVELOP PETROL 11B, 97108.CrossRefGoogle Scholar
Schwartz, K. B., Nolet, D. A. & Burns, R. G. 1980. Mössbauer spectroscopy and crystal chemistry of natural Fe–Ti garnets. AM MINERAL 65, 142–53.Google Scholar
Scott Smith, B. H. & Skinner, E. M. W. 1984. A new look at Prairie Creek, Arkansas. DEVELOP PETROL 11A, 255283. ANN SCI UNIV CLERMONT–FERRAND II 74, 33.CrossRefGoogle Scholar
Scott Smith, B. H., Danchin, R. V., Harris, J. W. & Stracke, K. J. 1984. Kimberlites near Orrorro, South Australia. DEVELOP PETROL 11A, 121–42. ANN SCI UNIV CLERMONT–FERRAND II 74, 123–28.CrossRefGoogle Scholar
Shee, S. R. & Gurney, J. J. 1979. The mineralogy of xenoliths from Orapa, Botswana. PROC SECOND INT KIMBERLITE CONF 2, 3749.Google Scholar
Shee, S. R., Gurney, J. J. & Robinson, D. N. 1982. Two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa. CONTRIB MINERAL PETROL 81, 7987.CrossRefGoogle Scholar
Shimizu, N. 1975a. Geochemistry of ultramafic inclusions from Salt Lake Crater, Hawaii and from southern African kimberlites. PHYS CHEM EARTH 9, 655–69.CrossRefGoogle Scholar
Shimizu, N. 1975b. Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. EARTH PLANET SCI LETT 25, 2632.CrossRefGoogle Scholar
Shimizu, N. & Allègre, C. J. 1978. Geochemistry of transition elements in garnet lherzolite nodules in kimberlites. CONTRIB MINERAL PETROL 67, 4150.CrossRefGoogle Scholar
Shimizu, N., Semet, M. & Allègre, C. J. 1978. Geochemical applications of quantitative ion microprobe analysis. GEOCHIM COSMOCHIM ACTA 42, 1321–34.CrossRefGoogle Scholar
Smith, D. & Ehrenberg, S. N. 1984. Zoned minerals in garnet peridotite nodules from the Colorado Plateau: implications for mantle metasomatism and kinetics. CONTRIB MINERAL PETROL 86, 274–85.CrossRefGoogle Scholar
Smith, J. V. 1977. Possible controls on the bulk composition of the earth: implications for the origin of the Earth and Moon. GEOCHIM COSMOCHIM ACTA SUPPL 9, 333–69.Google Scholar
Smith, J. V. 1981. The first 800 million years of Earth's history. PHIL TRANS R SOC LONDON A301, 401–22.Google Scholar
Smith, J. V. & Dawson, J. B. 1975. Chemistry of Ti-poor spinels, ilmenites and rutiles from peridotite and eclogite xenoliths. PHYS CHEM EARTH 9, 309–22.CrossRefGoogle Scholar
Smyth, J. R. & Caporuscio, F. A. 1984. Petrology of a suite of eclogite inclusions from the Bobbejaan kimberlite. II. Primary phase compositions and origin. DEVELOP PETROL 11B, 121–31.CrossRefGoogle Scholar
Smyth, J. R., McCormick, T. C. & Caporuscio, F. A. 1984. Petrology of a suite of eclogitic inclusions from the Bobbejaan kimberlite. I. Two unusual corundum-bearing kyanite eclogites. DEVELOP PETROL 11B, 109–19.CrossRefGoogle Scholar
Sobolev, N. 1977. Deep-seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle, ed. Boyd, F. R. (English trans, by D. A. Brown). Washington, D.C.: American Geophysical Union.CrossRefGoogle Scholar
Sobolev, N. & Lavrentyev, Yu. G. 1972. Isomorphic sodium admixture in garnets formed at high pressure. CONTRIB MINERAL PETROL 31, 112.CrossRefGoogle Scholar
Steele, I. M. & Smith, J. V. 1983. Petrography and mineralogy of two basalts and olivine-pyroxene-spinel fragments in achondrite EETA79001. J GEOPHYS RES 87, A375384.Google Scholar
Steele, I. M.Hervig, R. L., Hutcheon, I. D. & Smith, J. V. 1981. Ion microprobe techniques and analyses of olivine and low-Ca pyroxene. AM MINERAL 66, 526–46.Google Scholar
Stephens, W. E. & Dawson, J. B. 1977. Statistical comparison between pyroxenes from kimberlites and their associated xenoliths. J GEOL 85, 433–49.CrossRefGoogle Scholar
Stosch, H-G. 1981. Sc, Cr, Co and Ni partitioning between minerals from spinel peridotite xenoliths. CONTRIB MINERAL PETROL 78, 166–74. Also pers. comm.CrossRefGoogle Scholar
Sutherland, F. L., Hollis, J. D. & Barren, L. M. 1984. Garnet lherzolite and other inclusions from a basalt flow, Bow Hill, Tasmania. DEVELOP PETROL 11B, 145160, ANN SCI UNIV CLERMONT–FERRAND II 74, 157–62.CrossRefGoogle Scholar
Takahashi, E. & Kushiro, I. 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. AM MINERAL 68, 859–79.Google Scholar
Thompson, R. N. 1975. Is upper mantle phosphorus contained in sodic garnet? EARTH PLANET SCI LETT 26, 417424.CrossRefGoogle Scholar
Tompkins, L. A. & Haggerty, S. E. 1984. The Koidu kimberlite complex, Sierra Leone: geological setting, petrology and mineral chemistry. DEVELOP PETROL 11A, 83105. ANN SCI UNIV CLERMONT–FERRAND II 74, 99–121.CrossRefGoogle Scholar
Veblen, D. R. & Buseck, P. R. 1981. Hydrous pyriboles and sheet silicates in pyroxenes and uralites: intergrowth microstructures and reaction mechanisms. AM MINERAL 66, 1107–34.Google Scholar
Watson, E. B. 1977. Partitioning of manganese between forsterite and silicate liquid. GEOCHIM COSMOCHIM ACTA 41, 1363–74.CrossRefGoogle Scholar
Wells, R. A. 1977. Pyroxene thermometry in simple and complex systems. CONTRIB MINERAL PETROL 62, 129–39.CrossRefGoogle Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. CONTRIB MINERAL PETROL 42, 109–24.CrossRefGoogle Scholar
Woodhouse, J. H. & Dziewonski, A. M. 1984. Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J GEOPHYS RES 89, 5953–86.CrossRefGoogle Scholar