Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:36:33.040Z Has data issue: false hasContentIssue false

Origin of sulphur in metamorphosed stratabound mineralisation from the Argyll Group Dalradian of Scotland

Published online by Cambridge University Press:  03 November 2011

R. A. Scott
Affiliation:
R. A. Scott, Cambridge Arctic Shelf Programme, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, U.K.
R. A. D. Pattrick
Affiliation:
R. A. D. Pattrick, Department of Geology, The University, Manchester M13 9PL, U.K.
D. A. Polya
Affiliation:
D. A. Polya, Department of Geology, The University, Manchester M13 9PL, U.K.

Abstract

Sulphur isotopic data are presented for the four horizons of stratabound mineralisation in the Argyll Group Dalradian (Vendian) of the Central Highlands of Scotland. The styles of mineralisation reflect the stratigraphic and tectonic evolution of the Dalradian basin. The SEDEX-type Ba + (Zn + Pb) Loch Lyon Horizon has δ34S values for pyrite of +17% and for baryte of +27%. The baryte sulphur source was Dalradian sea-water although the values were modified by isotopic exchange with an H2S-rich metamorphic fluid derived from the surrounding graphitic schists. The sulphur source for sulphide in the horizon was probably the underlying strata; sulphide values were only slightly affected by metamorphism. Sulphides in the Pyrite Horizon are isotopically indistinguishable from those in the remainder of the volcanogenic Ben Lawers Schist Formation (0 ± 4%); these values suggest that, at least in the Tyndrum area, sulphides in the Pyrite Horizon are of igneous origin. VMS-type Cu + Zn + Pb mineralisation in the Ben Challum Quartzite Formation has a narrow range of values around + ll%. The likely source of this sulphide sulphur is reduced sea-water sulphate, the isotopic values remaining consistent owing to the buffering effect of anhydrite in the underlying calcium-rich rocks.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderton, R. 1975. Tidal flat and shallow marine sediments from the Craignish Phyllites, Middle Dalradian, Argyll, Scotland. GEOL MAG 12, 337–48.CrossRefGoogle Scholar
Atherton, M. P. 1977. The metamorphism of the Dalradian rocks of Scotland. SCOTT J GEOL 13, 331–70.CrossRefGoogle Scholar
Boast, A. M., Coleman, M. L. & Halls, C. 1983. Textural and stable isotopic evidence for the genesis of the Tynagh base-metal deposit, Ireland. ECON GEOL 76, 2755.CrossRefGoogle Scholar
Carpenter, R. H. 1974. Pyrrhotite isograd in southeastern Tennessee and southwestern North Carolina. GEOL SOC AMER BULL 85, 451–56.2.0.CO;2>CrossRefGoogle Scholar
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. 1980. The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. CHEM GEOL 28, 199260.CrossRefGoogle Scholar
Coats, J. S., Fortey, N. J., Gallagher, M. J. & Grant, A. 1984. Stratiform barium enrichment in the Dalradian of Scotland. ECON GEOL 79, 1585–95.CrossRefGoogle Scholar
Coats, J. S., Smith, C. G., Fortey, N. J., Gallagher, M. J., May, F. & McCourt, W. J. 1980. Stratabound barium-zinc mineralization in Dalradian schist near Aberfeldy, Scotland. INST MINING METALL TRANS 89, B11029.Google Scholar
Coats, J. S., Smith, C. G., Fortey, N. J., Gallagher, M. J., May, F. & McCourt, W. J. 1981. Stratabound barium-zinc mineralization in Dalradian schist near Aberfeldy, Scotland. Final Report. INST GEOL SCI MINERAL RECONN PROGRAMME, 40, 116p.Google Scholar
Coleman, M. L. 1980. Corrections for mass spectrometer analysis of SO2 INST GEOL SCI, STABLE ISOTOPE REPORT 45, 13p.Google Scholar
Coleman, M. L. & Moore, M. P. 1978. Direct reduction of sulphates to sulphur dioxide for isotopic analysis. ANAL CHEM 50, 1594–95.CrossRefGoogle Scholar
Deines, P. 1970. Mass spectrometer correction factors for determination of small isotopic variations of carbon and oxygen. INT J MASS SPECTRUM ION PHYS 4, 283–95.CrossRefGoogle Scholar
Ferry, J. M. 1980. A case study of the amount and distribution of heat and fluid during metamorphism. CONTR MIN PETROL 71, 373385.CrossRefGoogle Scholar
Ferry, J. M. 1981. Petrology of graphite sulfide-rich schists from south-central Maine: an example of desulfidation during prograde regional metamorphism. AMER MINERAL 66, 908–30.Google Scholar
Ferry, J. M. 1987. Metamorphic hydrology at 13-km depth and 400–550°C. AMER MINERAL 72, 3958.Google Scholar
Fortey, N. J. & Smith, C. G. 1986. Stratabound mineralization in Dalradian rocks near Tyndrum, Argyll. SCOTT J GEOL 22, 377–93.CrossRefGoogle Scholar
Franklin, J. M., Sangster, D. M. & Lydon, J. W. 1981. Volcanic-associated massive sulfide deposits. ECON GEOL 75th ANIV VOL, 485627.Google Scholar
Graham, C. M. and Bradbury, H. J. 1976. Cambrian and Precambrian basaltic igneous activity in the Scottish Dalradian – a review. GEOL MAG 118, 2737.CrossRefGoogle Scholar
Guidotti, C. V. 1970. The mineralogy and petrology of the transition from the lower to upper sillimanite zone in the Oquossoc Area, Maine. J PETROL 11, 277336.CrossRefGoogle Scholar
Guidotti, C. V., Cheney, J. J. & Henry, D. J. 1976. Sulfide-silicate phase relations in metapelites of northwestern Maine. AMER GEOPHYS UNION TRANS 58, 524.Google Scholar
Gustavson, L. B. & Williams, N. 1981. Sediment hosted stratiform deposits of copper, lead and zinc. ECON GEOL 75th ANIV VOL. 139–78.Google Scholar
Hall, A. J., Boyce, A. J. & Fallick, A. E. 1988. A sulphur isotope study of iron sulphides in the Late Precambrian Dalradian Easdale Slate Formation, Argyll, Scotland. MINERAL MAG 367, 483–90.CrossRefGoogle Scholar
Harris, A. L., Baldwin, T. C., Bradbury, H. J., Johnson, H. D. & Smith, R. A. 1978. Ensialic basin sedimentation: The Dalradian Supergroup. In Bowes, D. R. & Leake, B. E. (eds) Crustal Evolution in Northwestern Britain and adjacent regions, pp. 115–38. Liverpool: Seel House Press.Google Scholar
McDuff, R. E. & Edmond, J. M. 1982. On the fate of sulphate during hydrothermal circulation at mid-ocean ridges. EARTH PLANET SCI LETT 57, 117–32.CrossRefGoogle Scholar
McKibben, M. A. & Eldridge, C. S. 1988. Sulfur isotopic variations among minerals and aqueous species in the Salton Sea Geothermal System: A Shrimp Ion Microprobe and conventional study of active ore genesis in a sediment-hosted environment. AMER J SCI 289, 661707.CrossRefGoogle Scholar
Moles, N. R. 1985. Geology, geochemistry and petrology of the Foss stratiform barite-base metal deposit and adjacent Dalradian metasediments, near Aberfeldy, Scotland. Unpublished Ph.D. Thesis, University of Edinburgh.Google Scholar
Ohmoto, H. & Lasaga, A. C. 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. GEOCHIM COSMOCHIM ACTA 46, 1727–45.CrossRefGoogle Scholar
Ohmoto, H., Mizukami, M., Drummond, S. E., Eldridge, C. S., Pisutha-Arnond, V. & Lenagh, T. C. 1983. Chemical Processes of Kuroko Formation. In Ohmoto, H. & Skinner, B. J. (eds) The Kuroko and Related Volcanogenic Massive Sulfide Deposits. ECON GEOL MON 5, 570604.Google Scholar
Ohmoto, H. & Rye, R. O. 1979. Isotopes of sulfur and carbon. In Barnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits, pp. 509–63. New York: Wiley Interscience.Google Scholar
Roger, G., Dempster, T. T., Bluck, B. J. & Tanner, P. W. G. 1989. A high precision U-Pb age for the Ben Vuirich granite: implications for the evolution of the Scottish Dalradian Supergroup. J GEOL SOC LOND 146, 789–98.CrossRefGoogle Scholar
Robinson, P. & Tracy, R. J. 1976. Sulfide-silicate-oxide equilibria in sillimanite-K-feldspar pelitic schists, central Massachusetts. AMER GEOPHYS UNION TRANS 58, 524.Google Scholar
Rumble, D. III 1989. Evidence of fluid flow during regional metamorphism. EUR J MINERAL 1, 731–7.CrossRefGoogle Scholar
Rumble, D. III and Spear, F. S. 1983. Oxygen-isotope equilibration and permeability enhancement during regional metamorphism. J GEOL SOC LOND 140, 619–28.CrossRefGoogle Scholar
Russell, M. J., Hall, A. J., Willan, R. C. R., Allison, I., Anderton, R. & Bower, G. 1984. On the origin of the Aberfeldy celsian + baryte + base metal deposits, Scotland. In Prospecting in areas of glaciated terrain 1984 pp. 159–70. London: Institute of Mining and Metallurgy.Google Scholar
Scott, R. A. 1987. Lithostratigraphy, structure and mineralization of the Argyll Group Dalradian near Tyndrum, Scotland. Unpublished Ph.D. Thesis, University of Manchester.Google Scholar
Scott, R. A., Polya, D. A. & Pattrick, R. A. D. 1988. Proximal Cu + Zn exhalites in the Argyll Group Dalradian, Creag Bhocan, Perthshire. SCOTT J GEOL 24, 97112.CrossRefGoogle Scholar
Smith, C. G. 1977. Investigation of stratiform sulphide mineralization in parts of the Dalradian of central Perthshire, Scotland. INST MINING MET ALL 86, B501.Google Scholar
Smith, C. G., Gallagher, M. J., Coats, J. S. & Parker, M. E. 1984. Detection and general characteristics of strata-bound mineralization in the Dalradian of Scotland. INST MINING MET ALL 93, B12533.Google Scholar
Treagus, J. E. 1987. The structural evolution of the Dalradian of the central Highlands of Scotland. TRANS R SOC EDINBURGH 78, 115.CrossRefGoogle Scholar
Whelan, J. F., Rye, R. O. & DeLorraine, W. 1984. The Balmat-Edwards zinc-lead deposits-synsedimentary ore from Mississippi valley-type fluids. ECON GEOL 79, 239–65.CrossRefGoogle Scholar
Willan, R. C. R. & Coleman, M. L. 1983. Sulfur isotope study of the Aberfeldy barite, zinc, lead deposit and minor sulphide mineralization in the Dalradian metamorphic terrain, Scotland. ECON GEOL 78, 1619–56.CrossRefGoogle Scholar