Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T08:58:03.693Z Has data issue: false hasContentIssue false

Persistent organic pollutants (PAH, PCB, TPH) in freshwater, urban tributary and estuarine surface sediments of the River Clyde, Scotland, UK

Published online by Cambridge University Press:  13 November 2018

Christopher H. Vane*
Affiliation:
British Geological Survey, Organic Geochemistry, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, UK. Email: chv@bgs.ac.uk
Raquel A. Lopes dos Santos
Affiliation:
British Geological Survey, Organic Geochemistry, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, UK. Email: chv@bgs.ac.uk
Alexander W. Kim
Affiliation:
British Geological Survey, Organic Geochemistry, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, UK. Email: chv@bgs.ac.uk
Vicky Moss-Hayes
Affiliation:
British Geological Survey, Organic Geochemistry, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, UK. Email: chv@bgs.ac.uk
Fiona M. Fordyce
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK.
Jenny M. Bearcock
Affiliation:
British Geological Survey, Organic Geochemistry, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, UK. Email: chv@bgs.ac.uk
*
*Corresponding author

Abstract

Surface sediments from a 160-km stretch of the River Clyde, Scotland, were analysed for persistent organic pollutants to investigate distribution, source and environmental effect. Glasgow's urban tributaries polyaromatic hydrocarbons (PAH) ranged from 2.3 to 4226mgkg–1, total petroleum hydrocarbons (TPH) 72 to 37879mgkg–1 and polychlorinated biphenyls (PCB) 3 to 809μgkg–1, which were more polluted than the upper River Clyde PAH that ranged from 0.1 to 42mgkg–1, TPH 3 to 260mgkg–1 and PCB 2 to 147μgkg–1. Intermediate values of the inner Clyde estuary PAH ranging from 0.6 to 30mgkg–1, and PCB ranging from 5 to 130μgkg–1, were attributed to point sources and sediment transfer from the urban tributaries. Comparison with sediment quality criteria suggested possible adverse effects on aquatic biota. PAH isomeric ratios confirmed a pyrolytic source throughout the Clyde and benzo[a]pyrene/benzo[g,h,i]perylene ratios >0.6 confirmed that upper, urban and estuarine domains all to a lesser or greater extent accumulated PAH from traffic emissions. The degree of chlorination determined from PCB homologues differed in each of the three domains, suggesting variable source or that the process aerobic/anaerobic degradation varied in each of the three domains. The anthropogenic impact of the city of Glasgow can be quantified in that the urban tributary sediment mean values were 60 (PAH), 33 (TPH) and 11 (PCB) times higher than the rural upper Clyde counterpart.

Type
Articles
Copyright
Copyright © British Geological Survey UKRI 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Bearcock, J. M., Scheib, A. J. & Nice, S. E. 2011. A report on the G-BASE field campaign of 2010: the Clyde Basin. British Geological Survey Internal Report IR/11/053. Keyworth, Nottingham: British Geological Survey.Google Scholar
Beriro, D. J., Vane, C. H., Cave, M. R. & Nathanail, C. P. 2014. Effects of drying and comminution type on the quantification of Polycyclic Aromatic Hydrocarbons (PAH) in a homogenised gasworks soil and the implications for human health risk assessment. Chemosphere 111, 396404.Google Scholar
Brown, J. N. & Peake, B. M. 2006. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Science of the Total Environment 359, 145155.Google Scholar
Browne, M. A. E., Forsyth, I. H. & McMillan, A. A. 1986. Glasgow, a case study in urban geology. Journal of the Geological Society, London 143, 509520.Google Scholar
Budzinski, H., Jones, I., Bellocq, J., Pierard, C. & Garrigues, P. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry 58, 8597.Google Scholar
Cave, M. A., Wragg, J., Harrison, I., Vane, C. H., Van de Wiele, T., Nathanail, P., Ashmore, M. A., Thomas, R., Robinson, J. & Daly, P. 2010. Comparison of a batch mode and dynamic bioaccessibility tests for PAHs in soil samples. Environmental Science and Technology 44, 26542660.Google Scholar
Edgar, P. J., Davies, I. M., Hursthouse, A. S. & Matthews, J. E. 1999. The biogeochemistry of polychlorinated biphenyls (PCB) in the Clyde: distribution and source evaluation. Marine Pollution Bulletin 38, 486496.Google Scholar
Edgar, P. J., Hursthouse, A. S., Matthews, J. E. & Davies, I. M. 2003. An investigation of geochemical factors controlling the distribution of PCB in intertidal sediments at a contamination hot spot, the Clyde Estuary, UK. Applied Geochemistry 18, 327338.Google Scholar
Edgar, P. J., Hursthouse, A. S., Matthews, J. E., Davies, I. M. & Hillier, S. 2006. Sediment influence on congener-specific PCB bioaccumulation by Mytilus edulis: a case study from an intertidal hot spot, Clyde Estuary, UK. Journal of Environmental Monitoring 8, 887896.Google Scholar
Fordyce, F. M., Ó Dochartaigh, B. É., Lister, T. R., Cooper, R., Kim, A. W., Harrison, I., Vane, C. H. & Brown, S. E. 2004. Clyde Tributaries: Report of Urban Stream Sediment and Surface Water Geochemistry for Glasgow. British Geological Survey Commissioned Report CR/04/037. http://nora.nerc.ac.uk/18996. Keyworth, Nottingham: British Geological Survey.Google Scholar
Guo, W., He, M. C., Yang, Z. F., Lin, C. Y. & Quan, X. C. 2011. Characteristics of petroleum hydrocarbons in surficial sediments from the Songhuajiang River (China): spatial and temporal trends. Environmental Monitoring and Assessment 179, 8192.Google Scholar
Hursthouse, A. S., Adamczyk, M., Adamczyk, L., Smith, F. J. & Iqbal, P. 1994. Inorganic and Organic Contaminants in Intertidal Sediments of the Clyde – Preliminary-Observations of Historical Trends. Marine Pollution Bulletin 28, 765767.Google Scholar
Ingole, B., Sivadas, S., Goltekar, R., Clemente, S., Nanajkar, M., Sawant, R. & Ansari, Z. 2006. Ecotoxicological effect of grounded MV River Princess on the intertidal benthic organisms off Goa. Environment International 32, 284291.Google Scholar
Jones, D. G., Lister, T. R., Strutt, M. H., Entwisle, D. C., Harrison, I., Kim, A. W., Ridgway, J. & Vane, C. H. 2004. Estuarine Geochemistry: Report for Glasgow City Council. British Geological Survey Commissioned Report CR/04/057. Keyworth, Nottingham: British Geological Survey.Google Scholar
Katsoyiannis, A., Terzi, E. & Cai, Q. Y. 2007. On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69, 13371339.Google Scholar
Kim, A. W., Vane, C. H., Moss-Hayes, V., Beriro, D. B. & Fordyce, F. M. 2018. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Glasgow, UK. Earth and Environmental Science Transactions of The Royal Society of Edinburgh. DOI: 10.1017/S1755691018000324.Google Scholar
Knap, A. H., Williams, P. J. L. & Lysiak, E. 1982. Petroleum-hydrocarbons in sediments of Southampton water estuary. Marine Environmental Research 7, 235249.Google Scholar
Langston, W. H., O'Hara, S., Pope, N. D., Davey, M., Shortridge, E., Imamura, M., Harino, H., Kim, A. & Vane, C. H. 2012. Bioaccumulation surveillance in Milford Haven Waterway. Environmental Monitoring and Assessment 184, 289311.Google Scholar
Lim, M. C. H., Ayoko, G. A., Morawska, L., Ristovski, Z. D. & Jayaratne, E. H. 2007. Influence of fuelcomposition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars. Atmospheric Environment 41, 150160.Google Scholar
Liu, P. W. G., Chang, T. C., Whang, L. M., Kao, C. H., Pan, P. T. & Cheng, S. S. 2011. Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. International Biodeterioration & Biodegradation 65, 11191127.Google Scholar
Lopes dos Santos, R. A. & Vane, C. H. 2016. Signatures of tetraether lipids reveal anthropogenic overprinting of natural organic matter in sediments of the Thames Estuary, UK. Organic Geochemistry 93, 6876.Google Scholar
MacDonald, D. D., Ingersoll, C. G. & Berger, T. A. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39, 2031.10.1007/s002440010075Google Scholar
McCready, S., Slee, D. J., Birch, G. F. & Taylor, S. E. 2000. The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin 40, 999–1006.Google Scholar
Mi, H.-M., Lee, W.-J., Chen, C.-B., Yang, H.-H. & Wu, S.-J. 2000. Effect of fuel aromatic content on PAH emmission from a heavy duty diesel engine. Chemosphere 41, 17831790.Google Scholar
Ollivon, D., Garban, B. & Chesterikoff, A. 1995. Analysis of the distribution of some polycyclic aromatic hydrocarbons in sediments and suspended matter in the river Seine (France). Water, Air and Soil Pollution 81, 135152.10.1007/BF00477261Google Scholar
Readman, J. W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J. P., Catinni, C. & Mee, L. D. 2002. Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin 44, 4862.Google Scholar
Rogers, H. R. 2002. Assessment of PAH contamination in estuarine sediments using the equilibrium partitioning-toxic unit approach. Science of the Total Environment 290, 139155.Google Scholar
Scrimshaw, M. D. & Lester, J. N. 1995. Organochlorine contamination in sediments of the inner Thames estuary. Journal of the Chartered Institution of Water and Environmental Management 9, 519525.Google Scholar
Selbig, W. R., Bannerman, R. & Corsi, S. R. 2013. From streets to streams: assessing the toxicity potential of urban sediment by particle size. Science of The Total Environment 444, 381391.Google Scholar
Tobiszewski, M. & Namiesnik, J. 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution 162, 110119.Google Scholar
Vane, C. H., Harrison, I. & Kim, A. W. 2007a. Assessment of polyaromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in surface sediments of the Inner Clyde Estuary, UK. Marine Pollution Bulletin 54, 13011316.Google Scholar
Vane, C. H., Harrison, I. & Kim, A. W. 2007b. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in sediments from the Mersey Estuary, UK. Science of the Total Environment 374, 112126.Google Scholar
Vane, C. H., Harrison, I., Kim, A. W., Moss-Hayes, V., Vickers, B. P. & Horton, B. P. 2008. Status of organic pollutants in surface sediments of Barnegat Bay-Little Egg Harbor Estuary, New Jersey, USA. Marine Pollution Bulletin 56, 18021828.10.1016/j.marpolbul.2008.07.004Google Scholar
Vane, C. H., Harrison, I., Kim, A. W., Moss-Hayes, V., Vickers, B. P. & Hong, K. 2009. Organic and metal contamination in surface mangrove sediments of South China. Marine Pollution Bulletin 58, 134144.Google Scholar
Vane, C. H., Ma, Y.-J., Chen, S.-J. & Mai, B.-X. 2010. Inventory of Polybrominated diphenyl ethers (PBDEs) in sediments of the Clyde Estuary, U.K. Environmental Geochemistry & Health 32, 1321.Google Scholar
Vane, C. H., Chenery, S. R., Harrison, I., Kim, A. W., Moss-Hayes, V. & Jones, D. G. 2011. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, Pb-207/206, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 1085–1111.Google Scholar
Vane, C. H., Rawlins, B. G., Kim, A. W., Moss-Hayes, V., Kendrick, C. P. & Leng, M. J. 2013. Sedimentary transport and fate of polycyclic aromatic hydrocarbons (PAH) from managed burning of moorland vegetation on a blanket peat, South Yorkshire, U.K. Science of the Total Environment 449, 8194.10.1016/j.scitotenv.2013.01.043Google Scholar
Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-Hayes, V. & Nathanail, P. C. 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London UK. Applied Geochemistry 51, 303314.Google Scholar
Wilson, C., Clarke, R., D'Arcy, B. J., Heal, K. V. & Wright, P. W. 2005. Persistent pollutants urban rivers sediment survey: implications for pollution control. Water Science and Technology 51, 217224.Google Scholar
Woodhead, R. J., Law, R. J. & Matthiessen, P. 1999. Polycyclic aromatic hydrocarbons in surface sediments around England and Wales, and their possible biological significance. Marine Pollution Bulletin 38, 773790.Google Scholar
Yang, S. Y. N., Connell, D., Hawker, D. W. & Kayal, S. I. 1991. Polycyclic aromatic hydrocarbons in air soil and vegetation in the vicinity of an urban roadway. Science of the Total Environment 102, 229240.Google Scholar
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D. & Sylvestre, S. 2002. PAH in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33, 489515.Google Scholar