Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:18:57.010Z Has data issue: false hasContentIssue false

The potential role of the Antarctic Ice Sheet in global biogeochemical cycles

Published online by Cambridge University Press:  22 July 2013

J. L. Wadham
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS
R. De'ath
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS
F. M. Monteiro
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS
M. Tranter
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS
A. Ridgwell
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS
R. Raiswell
Affiliation:
School of Earth and Environment, University of Leeds, Leeds LS2 9JT
S. Tulaczyk
Affiliation:
Earth and Planetary Sciences Department, University of California, Santa Cruz, USA

Abstract

Once thought to be devoid of life, the Antarctic Ice Sheet is now known to be a dynamic reservoir of organic carbon and metabolically active microbial cells. At the ice-bed interface, subglacial lake and sedimentary environments support low diversity microbial populations, adapted to perennial cold, anoxia and lack of light. The dynamic exchange of water between these shallow environments conveys meltwaters and associated sediments into the coastal ocean. This, together with the release of iceberg-rafted debris to more distal coastal environments, could be important for sustaining primary productivity in the iron-limited Southern Ocean, via the release of associated nutrients and bioavailable iron. We estimate the magnitude and review the wider impacts of the potential export of nutrients (N, P, C, Si and bioavailable Fe) dissolved and associated with suspended sediments in Antarctic runoff and entombed in iceberg rafted debris. Located beneath subglacial lakes and the subglacial till complex are deep sedimentary basins up to 14 km thick, located largely around the Antarctic periphery. These sedimentary basins are largely hydrologically decoupled from shallower lake and till environments by the presence of highly consolidated sediments which limit the penetration of glacial meltwaters to depth. They provide extensive habitats for sustained microbial activity over Ma timescales, and are likely to be a focal point for the anaerobic cycling of organic carbon and other elements in the deep sub-surface. Organic carbon buried in these basins during ice sheet formation is thought to be microbially cycled to methane gas, and the methane largely stored as hydrate within sediments, stabilised by the high pressure/low temperature conditions. We conclude that the export of nutrients and biogenic gases from deep and shallow subglacial Antarctic environments designates Antarctica as a potentially important component of the Earth's carbon cycle, and highlight the importance of evaluating these potential impacts further via global and regional-scale biogeochemical modelling.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Alderkamp, A.-C., Mills, M. M., van Dijken, G. L., Laan, P., Thuróczy, C.-E., Gerringa, L. J. A., de Baar, H. J. W., Payne, C. D., Visser, R. J. W., Buma, A. G. J. & Arrigo, K. R. 2012. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity. In Arrigo, K. R. (ed.) Shedding Dynamic Light on Fe limitation (DynaLiFe). Deep-Sea Research Part II: Topical Studies in Oceanography 71–76, 3248.Google Scholar
Anandakrishnan, S. & Winberry, J. P. 2004. Antarctic subglacial sedimentary layer thickness from receiver function analysis. Global and Planetary Change 42, 167–76.Google Scholar
Arrigo, K. R.van Dijken, G. L. & Bushinsky, S. 2008. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research 113, C08004.Google Scholar
Bamber, J. L., Ferraccioli, F., Joughin, I., Shepherd, T., Rippin, D. M., Siegert, M. J. & Vaughan, D. G. 2006. East Antarctic ice stream tributary underlain by major sedimentary basin. Geology 34, 3336.Google Scholar
Barker, J. D., Sharp, M. J., Fitzsimons, S. J. & Turner, R. J. 2006. Abundance and dynamics of dissolved organic carbon in glacier systems. Arctic, Antarctic, and Alpine Research 38, 163–72.Google Scholar
Barker, P. F., Camerlenghi, A. & Acton, G. D. 1999. Leg 178 Summary. In Antarctic Glacial History and Sea-level Change, Sites 1095–1103. Proceedings of the Ocean Drilling Program, Initial Reports 178, 60. ???????: IODP.Google Scholar
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., Palmer, S. & Wadham, J. 2011. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophysical Research Letters 38, L08502.Google Scholar
Behrendt, J. C. 1999. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations – a review. Global and Planetary Change 23, 2544.Google Scholar
Behrendt, J. C., Finn, C. A., Blankenship, D. & Bell, R. E. 1998. Aeromagnetic evidence for a volcanic caldera(?) complex beneath the divide of the West Antarctic Ice Sheet. Geophysical Research Letters 25, 4385–88.Google Scholar
Behrenfeld, M. J. & Falkowski, P. G. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42, 120.Google Scholar
Bellanca, A., Aghib, F., Neri, R. & Sabatino, N. 2005. Bulk carbonate isotope stratigraphy from CRP-3 core (Victoria Land Basin, Antarctica): evidence for Eocene–Oligocene palaeoclimatic evolution. Global and Planetary Change 45, 237–47.Google Scholar
Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A. & Kujawinski, E. B. 2010. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochimica et Cosmochimica Acta 74, 3768–84.Google Scholar
Bindschadler, R.Vornberger, P., Blankenship, D., Scambos, T. & Jacobel, R. 1996. Surface velocity and mass balance of Ice Streams D and E, West Antarctica. Journal of Glaciology 42, 461–75.Google Scholar
Blankenship, D. D.Bell, R. E., Hodge, S. M., Brozena, J. M., Behrendt, J. C. & Finn, C. A. 1993. Active Volcanism beneath the West Antarctic Ice-Sheet and Implications for Ice-Sheet Stability. Nature 361, 526–29.Google Scholar
Bohrmann, G., Chin, C., Petersen, S., Sahling, H., Schwartz-Schampera, U., Greinert, J., Lammers, S., Rehder, G., Daehlmann, A., Wallmann, K., Dijkstra, S. & Schenke, H.-W. 1999. Hydrothermal activity at Hook Ridge in the Central Bransfield Basin, Antarctica. Geo-Marine Letters 18, 277–84.Google Scholar
Bottrell, S. H., Parkes, R. J., Cragg, B. A. & Raiswell, R. 2000. Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. Journal of the Geological Society 157, 711–14.Google Scholar
Bougamont, M., Hunke, E. C. & Tulaczyk, S. 2007. Sensitivity of ocean circulation and sea-ice conditions to loss of West Antarctic ice shelves and ice sheet. Journal of Glaciology 53, 490–98.Google Scholar
Bougamont, M. & Tulaczyk, S. 2003. Glacial erosion beneath ice streams and ice-stream tributaries: constraints on temporal and spatial distribution of erosion from numerical simulations of a West Antarctic ice stream. Boreas 32, 178–90.Google Scholar
Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. 2010. Methanogenesis in subglacial sediments. Environmental Microbiology Reports 2(5), 685–92.Google Scholar
Boyd, P. W. 2002. Environmental factors controlling phytoplankton processes in the southern ocean 1. Journal of Phycology 38, 844–61.Google Scholar
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M. T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A. & Zeldis, J. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695702.Google Scholar
Carlson, C. A., Hansell, D. A., Peltzer, E. T. & Smith, W. O. Jr. 2000. Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. In Smith, W. O. Jr. & Anderson, R. F. (eds) US Southern Ocean JGOFS Program (AESOPS). Deep-Sea Research Part II: Topical Studies in Oceanography 47, 3201–25.Google Scholar
Christner, B. C., Royston-Bishop, G., Foreman, C. M., Arnold, B. A., Tranter, M., Welch, K. A., Berry Lyons, W., Tsapin, A. I., Studinger, M. & Priscu, J. C. 2006. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnology and Oceanography 51, 2485–501.Google Scholar
Claypool, G., Lorensen, T. D.Johnson, C. A. 2004. Authigenic carbonates, methane generation, and oxidation in continental rise and shelf sediments. In Cooper, A. K., O'Brien, P. E. & Richter, C. (eds) Prydz Bay–Cooperation Sea: Glacial History and Paleoceanography, Sites 1165–1167. Proceedings of the Ocean Drilling Program, Scientific Results 188, 115. ???????: IODP.Google Scholar
Coale, K. H., Johnson, K. S., Chavez, F. P., Buesseler, K. O., Barber, R. T., Brzezinski, M. A., Cochlan, W. P., Millero, F. J., Falkowski, P. G., Bauer, J. E., Wanninkhof, R. H., Kudela, R. M., Altabet, M. A., Hales, B. E., Takahashi, T., Landry, M. R., Bidigare, R. R., Wang, X., Chase, Z., Strutton, P. G., Friederich, G. E., Gorbunov, M. Y., Lance, V. P., Hilting, A. K., Hiscock, M. R., Demarest, M., Hiscock, W. T., Sullivan, K. F., Tanner, S. J., R. Gordon, M., Hunter, C. N., Elrod, V. A., Fitzwater, S. E., Jones, J. L., Tozzi, S., Koblizek, M., Roberts, A. E., Herndon, J., Brewster, J., Ladizinsky, N., Smith, G., Cooper, D., Timothy, D., Brown, S. L., Selph, K. E., Sheridan, C. C., Twining, B. S. & Johnson, Z. I. 2004. Southern ocean iron enrichment experiment: Carbon cycling in high- and low-Si waters. Science 304, 408–14.Google Scholar
Colwell, F. S., Boyd, S., Delwiche, M. E., Reed, D. W., Phelps, T. J. & Newby, D. T. 2008. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin. Applied and Environmental Microbiology 74, 3444–52.Google Scholar
Cooper, A. K., Davey, F. J., & Behrendt, J. C. 1987. Seismic stratigraphy and structure of the Victoria Land basin, Western Ross Sea, Antarctica. In Cooper, A. K. & Davey, F. J. (eds) The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea, 2766. Houston, Texas: Circum-Pacific Council for Energy and Mineral Resources.Google Scholar
Cooper, A. K., Davey, F. J. & Hinz, K. 1991. Crustal extension and origin of sedimentary basins beneath the Ross Sea and Ross Ice shelf. In Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological Evolution of Antarctica, 285–92. New York: Cambridge University Press.Google Scholar
Cowton, T., Nienow, P., Bartholomew, I., Sole, A. & Mair, D. 2012. Rapid erosion beneath the Greenland ice sheet. Geology 40(4), 343–46.Google Scholar
DeConto, R. M. & Pollard, D. 2003. A coupled climate-ice sheet modeling approach to the Early Cenozoic history of the Antarctic ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 198, 3952.Google Scholar
Dierssen, H. M., Smith, R. C. & Vernet, M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proceedings of the National Academy of Sciences 99(4), 1790–95.Google Scholar
Drewry, D. J. 1976. Sedimentary Basins of East Antarctic Craton from Geophysical Evidence. Tectonophysics 36, 301–14.Google Scholar
Edwards, R. & Sedwick, P. 2001. Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic waters. Geophysical Research Letters 28, 3907–10.Google Scholar
Etiope, G. & Klusman, R. W. 2002. Geologic emissions of methane to the atmosphere. Chemosphere 49, 777–89.Google Scholar
Fedorov, L. V., Grikurov, G. E., Kurinin, R. G. & Masolov, V. N. 1982. Crustal structure of the Lambert Glacier area from geophysical data. In Craddock, C. (ed.) Antarctic Geoscience, 931–36. Madison: University of Wisconsin Press.Google Scholar
Ferraccioli, F., Coren, F., Bozzo, E., Zanolla, C., Gandolfi, S., Tabacco, I., & Frezzotti, M. 2001. Rifted(?) crust at the East Antarctic Craton margin: gravity and magnetic interpretation along a traverse across the Wilkes Subglacial Basin region. Earth and Planetary Science Letters 192(3), 407–21.Google Scholar
Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E. & Corr, H. 2009. Aeromagnetic exploration over the East Antarctic Ice Sheet: A new view of the Wilkes Subglacial Basin. Tectonophysics 478(1–2), 6277.Google Scholar
Florindo, F., Bohaty, S. M., Erwin, P. S., Richter, C., Roberts, A. P., Whalen, P. A. & Whitehead, J. M. 2003. Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP sites 1165 and 1166, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 198(1–2), 69100.Google Scholar
Föllmi, K. B., Hosein, R., Arn, K. & Steinmann, P. 2009. Weathering and the mobility of phosphorus in the catchments and forefields of the Rhone and Oberaar glaciers, central Switzerland: implications for the global phosphorus cycle on glacial-interglacial timescales. Geochimica et Cosmochimica Acta 73(8), 2252–82.Google Scholar
Frew, R., Bowie, A., Croot, P. & Pickmere, S. 2001. Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. In Law, C. S., Boyd, P. W. & Watson, A. J. (eds) The Southern Ocean Iron Release Experiment (SOIREE). Deep Sea Research Part II: Topical Studies in Oceanography 48, 2467–81.Google Scholar
Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. 2007. An active subglacial water system in West Antarctica mapped from space. Science 315(5818), 1544–48.Google Scholar
Fung, I. Y., Meyn, S. K., Tegen, I., Doney, S. C., John, J. G. & Bishop, J. K. B. 2000. Iron supply and demand in the upper ocean. Global Biogeochemical Cycles 14(1), 281–95.Google Scholar
Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 159, 330.Google Scholar
Garrels, F. T. & Mackenzie, F. T. 1971. Evolution of Sedimentary Rocks. New York: W. W. Norton. 397 pp.Google Scholar
Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuróczy, C.-E., De Baar, H. J. W., Mills, M. M., van Dijken, G. L., van Haren, H. & Arrigo, K. R. 2012. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. In Arrigo, K. R. (ed.) Shedding Dynamic Light on Fe limitation (DynaLiFe). Deep-Sea Research Part II: Topical Studies in Oceanography 7176, 1631.Google Scholar
Goodwin, I. D. 1988. The nature and origin of a jokulhlaup near Casy Station, Antarctica. Journal of Glaciology 34, 95101.Google Scholar
Gosselin, D. C., Harvey, F. E. & Frost, C. D. 2001. Geochemical Evolution of Ground Water in the Great Plains (Dakota) Aquifer of Nebraska: Implications for the Management of a Regional Aquifer System. Ground Water 39(1), 98108.Google Scholar
Green, W. J., Stage, B. R., Preston, A., Wagers, S., Shacat, J. & Newell, S. 2005. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochimica et Cosmochimica Acta 69(4), 839–50.Google Scholar
Hambrey, M. J. & McKelvey, B. 2000. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region. Geology 28, 887–90.Google Scholar
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S. & Griffiths, M. 2008. Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming. Journal of Climate 21(2), 331–41.Google Scholar
Hodson, A. J., Tranter, M., Dowdeswell, J. A., Gurnell, A. M. & Hagen, J. O. 1997. Glacier thermal regime and suspended-sediment yield: a comparison of two high-Arctic glaciers. In Whillams, I. M. (ed.) Papers from the International Symposium on Changing Glaciers. (Fjaerland, Norway, 24–27 June 1996). Annals of Glaciology 24, 3237.Google Scholar
Hodson, A. J., Mumford, P & Lister, D. 2004. Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrological Processes 18(13), 2409–22.Google Scholar
Hodson, A. J., Mumford, P. N., Kohler, J. & Wynn, P. M. 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72(2), 233–56.Google Scholar
Hodson, A. J. & Ferguson, R. I. 1999. Fluvial suspended sediment transport from cold and warm-based glaciers in Svalbard. Earth Surface Processes and Landforms 24, 957–74.Google Scholar
Holland, H. D. 1978. The chemistry of the atmosphere and oceans. New York: Wiley-Interscience. 351 pp.Google Scholar
Holloway, J. M. & Dahlgren, R. A. 2002. Nitrogen in rock: occurrences and biogeochemical implications. Global Biogeochemical Cycles 16(4), 65-1–65-17.Google Scholar
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D'Amore, D. & Scott, D. 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462(7276), 1044–47.Google Scholar
Houghton, R. A. 2007. Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences 35, 313–47.Google Scholar
Huybers, P. & Denton, G. 2008. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geoscience 1, 787–92.Google Scholar
Jamieson, S. S. R., Hulton, N. R. J., Sugden, D. E., Payne, A. J. & Taylor, J. 2005. Cenozoic landscape evolution of the Lambert basin, East Antarctica: the relative role of rivers and ice sheets. In Florindo, F., Harwood, D. M. & Wilson, G. S. (eds) Long-term changes in Southern high-latitude ice sheets and climate, the Cenozoic history. Global and Planetary Change 45(1–3), 3549.Google Scholar
Joughin, I., Tulaczyk, S., MacAyeal, D. R. & Engelhardt, H. 2004. Melting and freezing beneath the Ross ice streams, Antarctica. Journal of Glaciology 50, 96108.Google Scholar
Karl, D. M., Bird, D. F., Björkman, K., Houlihan, T., Shackelford, R. & Tupas, L. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286(5447), 2144–47.Google Scholar
Karner, G. D., Studinger, M. & Bell, R. E. 2005. Gravity anomalies of sedimentary basins and their mechanical implications: Application to the Ross Sea basins, West Antarctica. Earth and Planetary Science Letters 235(3–4), 577–96.Google Scholar
Kelly, S. R. A., Ditchfield, P. W., Doubleday, P. A. & Marshall, J. D. 1995. An Upper Jurassic Methane-Seep Limestone from the Fossil Bluff Group Fore-Arc Basin of Alexander Island, Antarctica. Journal of Sedimentary Research Section A65, 274–82.Google Scholar
Kettler, R. M. 2001. Results of Whole-Rock Organic Geochemical Analyses of the CRP-3 Drillcore, Victoria Land Basin, Antarctica. Terra Antarctica 8, 303–08.Google Scholar
Kim, M.-J., Nriagu, J. & Haack, S. 2002. Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution 120(2), 379–90.Google Scholar
King, E. C., Woodward, J. & Smith, A. M. 2007. Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream Antarctica. Journal of Glaciology 53(183), 665–72.Google Scholar
Lafreniere, M. J. & Sharp, M. J. 2004. The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: Interpreting hydrological flow routing and DOC sources. Arctic Antarctic and Alpine Research 36, 156–65.Google Scholar
Lancelot, C., de Montety, A., Goosse, H., Becquevort, S., Schoemann, V., Pasquer, B. & Vancoppenolle, M. 2009. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences 6, 2861–78.Google Scholar
Lanoil, B., Skidmore, M., Priscu, J. C., Han, S., Foo, W., Vogel, S. W., Tulaczyk, S. & Engelhardt, H. 2009. Bacteria beneath the West Antarctic Ice Sheet. In Cary, C., Murray, A. & McDonald, I. (eds) Polar Microbiology. Environmental Microbiology 11(3), 609–15.Google Scholar
Le Brocq, A. M., Payne, A. J., Siegert, M. J. & Alley, R. B. 2009. A subglacial water-flow model for West Antarctica. Journal of Glaciology 55(193), 879–88.Google Scholar
Lin, H., Rauschenberg, S., Hexel, C. R., Shaw, T. J. & Twining, B. S. 2011. Free-drifting icebergs as sources of iron to the Weddell Sea. In Smith, K. L. Jr. (ed.) Free-Drifting Icebergs in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 58(11–12), 1392–406.Google Scholar
Lonsdale, M. J. 1990. The relationship between silica diagensis, methane and seismic reflections on the South Orkney Microcontinent. Proceedings of the Ocean Drilling Programme, Scientific Results 113, 37. Southampton, UK: School of Ocean & Earth Science, Southampton University.Google Scholar
Loscher, B. M., De Baar, H. J. W., De Jong, J. T. M., Veth, C. & Dehairs, F. 1997. The distribution of Fe in the antarctic circumpolar current. Deep Sea Research Part II: Topical Studies in Oceanography 44(1–2), 143–87.Google Scholar
Lowe, A. L. & Anderson, J. B. 2002. Reconstruction of the West Antarctic ice sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent retreat history. Quaternary Science Reviews 21, 1879–97.Google Scholar
Lowe, A. L. & Anderson, J. B. 2003. Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica. Journal of Glaciology 49, 125–38.Google Scholar
Lythe, M. B. & Vaughan, D. G. 2001. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research-Solid Earth 106(B6), 11335–51.Google Scholar
Martin, J. H. 1990. Glacial-Interglacial CO2 Change: The Iron Hypothesis. Paleoceanography 5, 113.Google Scholar
Martin, T. & Adcroft, A. 2010. Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Modelling 34, 111–24.Google Scholar
Maule, C. F., Purucker, M. E., Olsen, N. & Mosegaard, K. 2005. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309(5733), 464–67.Google Scholar
McIntosh, J. C. & Walter, L. M. 2005. Volumetrically significant recharge of Pleistocene glacial meltwaters into epicratonic basins: Constraints imposed by solute mass balances. Chemical Geology 222, 292309.Google Scholar
Mikucki, J. A., Foreman, C. M., Sattler, B., Lyons, W. B. & Priscu, J. C. 2004. Geomicrobiology of Blood Falls: An iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochemistry 10, 199220.Google Scholar
Mikucki, J. A., Pearson, A., Johnston, D. T., Turchyn, A. V., Farquhar, J., Schrag, D. P., Anbar, A. D., Priscu, J. C. & Lee, P. A. 2009. A Contemporary Microbially Maintained Subglacial Ferrous “Ocean”. Science 324(5925), 397400.Google Scholar
Moore, J. K. & Abbott, M. R. 2000. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. Journal of Geophysical Research 105, 28709–22.Google Scholar
Moore, J. K. & Braucher, O. 2008. Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences 5, 631–56.Google Scholar
Morgan, V. I. & Budd, W. F. 1975. Radio-echosounding of the Lambert Glacier basin. Journal of Glaciology 15, 103–11.Google Scholar
Munson, C. G. & Bentley, C. R. 1992. The Crustal Structure beneath Ice Stream C. and Ridge B. C., West Antarctica from Seismic Refraction and Gravity Measurements. In Yoshida, Y., Kaminuma, K. & Shiraishi, K. (eds) Recent Progress in Antarctic Earth Science, 507–14. Tokyo: Terra. Sci.Google Scholar
Nelson, D. M. & Smith, W. O. Jr. 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge--II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Research Part I: Oceanographic Research Papers 33, 1389–412.Google Scholar
Ogawa, H., Fukuda, R. & Koike, I. 1999. Vertical distributions of dissolved organic carbon and nitrogen in the Southern Ocean. Deep-Sea Research Part I: Oceanographic Research Papers 46(10), 1809–26.Google Scholar
Pattyn, F. 2010. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters 295, 451–61.Google Scholar
Peters, L. E., Anandakrishnan, S., Alley, R. B., Winberry, J. P., Voigt, D. E., Smith, A. M. & Morse, D. L. 2006. Subglacial sediments as a control on the onset and location of two Siple Coast ice streams, West Antarctica. Journal of Geophysical Research-Solid Earth 111(B1) DOI: 10.1029/2005JB003766.Google Scholar
Pollard, D. & DeConto, R. M. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458. Doi 10.1038/Nature07809.Google Scholar
Priscu, J. C., Adams, E. A., Lyons, W. B., Voytek, M. A., Mogk, D. W., Brown, R. L., McKay, C. P., Takacs, C. D., Welch, K. A., Wolf, C. F., Kirshtein, J. D. & Avci, R. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286(5447), 2141–44.Google Scholar
Priscu, J. C., Tulaczyk, S., Studinger, M., Kennicutt, M. C. II, Christner, B. C. & Foreman, C. M. 2008. Antarctic Subglacial Water: Origin, Evolution and Ecology. In Vincent, W. F. & Laybourn-Parry, J. (eds) Polar Lakes and Rivers, Chapter 7. New York: Oxford University Press Inc.Google Scholar
Raiswell, R. 2011. Iceberg-hosted nanoparticulate Fe in the Southern Ocean: Mineralogy, origin, dissolution kinetics and source of bioavailable Fe. Deep Sea Research Part II: Topical Studies in Oceanography 58, 1364–75.Google Scholar
Raiswell, R., Tranter, M., Benning, L. G., Siegert, M., De'ath, R., Huybrechts, P. & Payne, T. 2006. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochimica et Cosmochimica Acta 70(11), 2765–80.Google Scholar
Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. 2008. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochemical Transactions 9. doi:10.1186/1467-4866-9-7.Google Scholar
Raiswell, R., Benning, L. G., Davidson, L., Tranter, M. & Tulaczyk, S. 2009. Schwertmannite in wet, acid, and oxic microenvironments beneath polar and polythermal glaciers. Geology 37(5), 431–34.Google Scholar
Redfield, A. C. 1934. On the proportions of organic derivatives in seawater and their relation to the composition of plankton. In Daniel, R. J. (ed.) James Johnson Memorial Volume, 177–92. Liverpool, UK: Liverpool University Press.Google Scholar
Reeburgh, W. S., Whalen, S. C. & Alperin, M. J. 1993. The role of methylotrophy in the global methane budget. In Murrell, J. C. & Kelly, D. P. (eds) Microbial growth on C1 compounds, Proceedings of 7th International Symposium, 114. Andover, Hants, UK: Intercept Ltd. 520 pp.Google Scholar
Rippin, D. M., Bamber, J. L., Siegert, M. J., Vaughan, D. G. & Corr, H. F. J. 2004. The role of ice thickness and bed properties on the dynamics of the enhanced-flow tributaries of Bailey Ice Stream and Slessor Glacier, East Antarctica. In Jacka, T. H. (ed.) Papers from the Seventh International Symposium of Antarctic Glaciology (ISAG-7). Annals of Glaciology 39, 366–72.Google Scholar
Roony, S. T., Blankenship, D. D. & Bentley, C. R. 1987. Seismic refraction measurements of crustal structure in west Antarctica. In McKenzie, G. D. (ed.) Gondwana Six: Structure,Tectonics and Geophysics. Geophysical Monograph 40, 17. Washington, D.C.: American Geophysical Union.Google Scholar
Rutt, I. C., Hagdorn, M., Hulton, N. R. J. & Payne, A. J. 2009. The Glimmer community ice sheet model. Journal of Geophysical Research: Earth Surface 114(F2). DOI: 10.1029/2008JF001015.Google Scholar
Shaw, T. J., Raiswell, R., Hexel, C. R., Vu, H. P., Moore, W. S., Dudgeon, R. & Smith, K. L. Jr. 2011. Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. In Smith, K. L. Jr. (ed.) Free-Drifting Icebergs in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 58(11–12), 1376–83.Google Scholar
Sigman, D. M. & Boyle, E. A. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–69.Google Scholar
Skidmore, M., Tranter, M., Tulaczyk, S. & Lanoil, B. 2010. Hydrochemistry of ice stream beds – evaporitic or microbial effects? Hydrological Processes 24(4), 517–23.Google Scholar
Smith, W. O., Nelson, D. M., Ditullio, G. R. & Leventer, A. 1996. Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates. Journal of Geophysical Research 101(C8), 18455–65.Google Scholar
Statham, P. J., Skidmore, M. & Tranter, M. 2008. Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Global Biogeochemical Cycles 22(3). DOI: 10.1029/2007GB003106.Google Scholar
Stibal, M., Wadham, J. L., Lis, G. P., Telling, J., Pancost, R. D., Dubnick, A., Sharp, M. J., Lawson, E. C., Butler, C. E. H., Hasan, F., Tranter, M. & Anesio, A. M. 2012. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biology 18(11), 3332–45.Google Scholar
Studinger, M., Bell, R., Finn, C. A. & Blankenship, D. 2002. Mesozoic and Cenozoic extensional tectonics of the West Antarctic Rift System from high-resolution airborne geophysical mapping. Royal Society of New Zealand Bulletin 35, 563–69.Google Scholar
Studinger, M., Karner, G. D., Bell, R. E., Levin, V., Raymond, C. A. & Tikku, A. A. 2003. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth and Planetary Science Letters 216(4), 663–77.Google Scholar
Studinger, M., Bell, R. E., Buck, W. R., Karner, G. D. & Blankenship, D. D. 2004. Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth and Planetary Science Letters 220(3–4), 391408.Google Scholar
Sugden, D. E., Bentley, M. J. & Ó Cofaigh, C. 2006. Geological and geomorphological insights into Antarctic ice sheet evolution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1844), 1607–25.Google Scholar
Sullivan, C. W., Arrigo, K. R., McClain, C. R., Comiso, J. C. & Firestone, J. 1993. Distributions of Phytoplankton Blooms in the Southern-Ocean. Science 262(5141), 1832–37.Google Scholar
Tagliabue, A., Bopp, L. & Aumont, O. 2009. Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry. Geophysical Research Letters 36(13). DOI: 10.1029/2009GL038914.Google Scholar
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G. & Zimov, S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23(2). DOI: 10.1029/2008GB003327.Google Scholar
Tranter, M., Sharp, M. J., Lamb, H. R., Brown, G. H., Hubbard, B. P. & Willis, I. C. 2002. Geochemical weathering at the bed of Haut Glacier d'Arolla, Switzerland – a new model. Hydrological Processes 16(5), 959–93.Google Scholar
Trehu, A., Behrendt, J. & Fritsch, J. 1993. Generalised crustal structure of the Central Basin, Ross Sea, Antarctica. Geologisches Jahrbuch 47, 291312.Google Scholar
Uemura, T., Taniguchi, M. & Shibuya, K. 2011. Submarine groundwater discharge in Lützow-Holm Bay, Antarctica. Geophysical Research Letters 38(8). DOI: 10.1029/2010GL046394.Google Scholar
Vernet, M., Sines, K., Chakos, D., Cefarelli, A. O. & Ekern, L. 2011. Impacts on phytoplankton dynamics by free-drifting icebergs in the NW Weddell Sea. In Smith, K. L. Jr. (ed.) Free-Drifting Icebergs in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 58(11–12), 1422–35.Google Scholar
Wadham, J. L., Bottrell, S., Tranter, M. & Raiswell, R. 2004. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth and Planetary Science Letters 219(3–4), 341–55.Google Scholar
Wadham, J. L., Tranter, M., Tulaczyk, S. & Sharp, M. 2008. Subglacial methanogenesis A potential climatic amplifier? Global Biogeochemical Cycles 22(2). DOI: 10.1029/2007GB002951.Google Scholar
Wadham, J. L., Tranter, M., Skidmore, M., Hodson, A. J., Priscu, J., Lyons, W. B., Sharp, M., Wynn, P. & Jackson, M. 2010. Biogeochemical weathering under ice: Size matters. Global Biogeochemical Cycles 24(3). DOI: 10.1029/2009GB003688.Google Scholar
Wadham, J. L., Arndt, S., Tulaczyk, S., Stibal, M., Tranter, M., Telling, J., Lis, G. P., Lawson, E., Ridgwell, A., Dubnick, A., Sharp, M. J., Anesio, A. M. & Butler, C. E. H. 2012. Potential methane reservoirs beneath Antarctica. Nature 488(7413), 633–37.Google Scholar
Weitemeyer, K. A. & Buffett, B. A. 2006. Accumulation and release of methane from clathrates below the Laurentide and Cordilleran ice sheets. Global and Planetary Change 53, 176–87.Google Scholar
Winberry, J. P. & Anandakrishnan, S. 2004. Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology 32, 977–80.Google Scholar
Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. 2006. Rapid discharge connects Antarctic subglacial lakes. Nature 440(7087), 1033–36.Google Scholar