Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T06:30:22.422Z Has data issue: false hasContentIssue false

A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Volcanicity, palaeoenvironments and palaeoecology

Published online by Cambridge University Press:  03 November 2011

Richard M. Bateman
Affiliation:
Richard M. Bateman and Andrew C. Scott, Geology Department, Royal Holloway and Bedford New CollegeUniversity of London), Egham, Surrey, TW20 0EX, England
Andrew C. Scott
Affiliation:
Present address: Paleobiology Department, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A.

Abstract

The classic late Tournaisian plant-bearing locality at Oxroad Bay was investigated by detailed field mapping, lithological logging, studies of clast orientation, thin-section petrography and analyses of bulk geochemistry. The lithologically and structurally complex, c. 45 m-thick succession includes eight plant-bearing exposures (each consisting of up to 16 phytofossiliferous horizons) that have yielded 43 anatomically-preserved organ-species and 19 adpressed organ-species. All floral assemblages are allochthonous s.l. and demonstrate a wide range of preservation states. They occur in five successive facies (braided flood-plain, shallow volcanigenic lacustrine, terrestrial mass-flow/base-surge, shallow biogenic lacustrine, dominantly terrestrial reworked ashes) that reflect increasing influence of several basaltic tuff-ring volcanoes on an ocean-marginal lowland bordering the Southern Uplands Massif. The variable local climate reflected proximity to the proto-North Sea and eruptive seeding of the atmosphere with ash particles. Base-surges, seismically-initiated mass-flows and volcanically-induced wildfires restricted the development of mature soils and of edaphic climax communities. These disturbances created a sequence of mosaic palaeocatenas that supported a wide range of sub-communities at any one moment in time. At least some of the relatively k-selected species that occupied the preceding, fluvially-dominated terrain were extirpated by the persistent volcanism, yielding to immigrants that were better pre-adapted to the unstable environment. Low levels of competition allowed non-adaptive n-selection, enhancing the establishment potential of evolutionary innovations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K. L. 1965. A new fertile lycopod from the Lower Carboniferous of Scotland. PALAEONTOLOGY 8, 281–93.Google Scholar
Alvin, K. L. 1966. Two cristate megaspores from the Lower Carboniferous of Scotland. PALAEONTOLOGY 9, 488–91.Google Scholar
Arthur, A. 1984. Mechanisms of Morphological Evolution. New York: Wiley.Google Scholar
Bakker, J. G. M. & Salomons, J. B. 1989. A palaeoecological record of a volcanic soil sequence in the Nevado del Ruiz area, Colombia. REV PALAEOBOT PALYNOL 60, 149–63.Google Scholar
Bambach, R., Scotese, C. R. & Ziegler, A. M. 1980. Before Pangaea: the geographies of the Paleozoic world. AM SCIENT 68, 2638.Google Scholar
Barnard, P. D. W. 1960. Studies on some Lower Carboniferous plants from East Lothian. PhD thesis, London University.Google Scholar
Bartram, K. M. 1987. The palynology and petrology of the Barnsley Seam, Westphalian B, Yorkshire, England. PhD thesis, London University.Google Scholar
Bartram, K. M., Jeram, A. J. & Selden, P. A. 1987. Arthropod cuticles in coal. Q JL GEOL SOC LOND 144, 513–7.CrossRefGoogle Scholar
Bascomb, C. L. 1961. A calcimeter for routine use on soil samples. Chemy Ind, 1826-7.Google Scholar
Bascomb, C. L. 1974. Physical and chemical analyses of <2mm samples. In Avery, B. W. & Bascomb, C. L. (eds) Soil Survey Laboratory Methods, 1440. Harpenden: Soil Survey technical monograph 6.Google Scholar
Bateman, R. M. 1988. Palaeobotany and palaeoenvironments of Lower Carboniferous floras from two volcanigenic terrains in the Scottish Midland Valley. PhD thesis, London University.Google Scholar
Bateman, R. M. & Catt, J. A. 1985. Modification of heavy mineral assemblages in English coversands by acid pedochemical weathering. CATENA 12, 121.CrossRefGoogle Scholar
Bateman, R. M. & Rothwell, G. W. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole-plant concepts. TRANS R SOC EDINBURGH 81, 127159.CrossRefGoogle Scholar
Bateman, R. M. & Scott, A. C. 1987. Palaeoecology of early seed plants: approaches and general conclusions (Symposium 5·29: Evolution of early seed plants). In Greuter, W., Zimmer, B. & Behnke, H.-D. (eds) Abstracts of the 14th International Botanical Congress (Berlin, 1987), 283.Google Scholar
Besley, B. M. 1987. Sedimentological evidence for Carboniferous and early Permian palaeoclimates of Europe. ANN SOC GEOL NORD 151, 131–43.Google Scholar
Birks, H. J. B. 1987. Multivariate analysis in geology and geochemistry: an introduction. CHEM INT SYSTEMS 2, 1528.CrossRefGoogle Scholar
Birks, H. J. B. & Birks, H. H. 1980. Quaternary Palaeoecology. London: Edward Arnold.Google Scholar
Bless, M. J. M., Bouckaert, J. & Paproth, E. 1984. Migration of facies belts as a response to continental drift during the late Devonian and Carboniferous. GÉOLOGIE BULL SOC BELGE GEOL 93, 189–95.Google Scholar
Bless, M. J. M., Bouckaert, J. & Paproth, E. 1987. Fossil assemblages and depositional environments: limits to stratigraphical correlations. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 6173. New York: Wiley.Google Scholar
Bott, M. H. P. 1987. Subsidence mechanisms of Carboniferous basins in northern England. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 2132. New York: Wiley.Google Scholar
Briggs, D. J. 1977. Sources and Methods in Geography: Sediments. London: Butterworths.Google Scholar
Brown, R. W. 1956. Composition of Scientific Words, 2nd edn. Washington D.C.: Smithsonian Institution Press.Google Scholar
Caldas, E. F. & Yaalon, D. H. (eds) 1986. Volcanic soils: weathering and landscape relations of soils on tephra and basalt. CATENA: supplement 7.Google Scholar
Cameron, I. & McAdam, A. D. 1978. The oil-shales of the Lothians, Scotland: present resources and former workings. REP INST GEOL SCI 78, 28.Google Scholar
Cheeney, R. F. 1983. Statistical Methods in Geology for Field and Laboratory Decisions. London: Allen & Unwin.Google Scholar
Chyi, L. L., Elizalde, L., Smith, G. E. & Ehmann, W. D. 1978. Multivariate analysis of characterisation of limestone units based on minor and trace element contents. In Merriam, D. F. (ed) Recent Advances in Geomathematics, 3550. Oxford:; Pergamon.CrossRefGoogle Scholar
Clayton, G. 1985. Dinantian miospores and inter-continental; correlation. In Escobedo, J. L., Granados, L. F., Menendez, B., Pignatelli, R., Rey, R. & Wagner, R. H. (eds) C R 10me CONG INT STRAT GÉOL CARB (Madrid, 1983) 4, 923.Google Scholar
Clayton, G., Coquel, R., Doubinger, J., Gueinn, K. J., Loboziak, S., Owens, B. & Streel, M. 1977. Carboniferous miospores of western Europe: illustration and zonation. MEDED RIJKS GEOL DIENST 29, 171.Google Scholar
Clayton, G., Higgs, K., Keegan, J. B. & Sevastopulo, G. D. 1978. Correlation of the palynological zonation of the Dinantian of the British Isles. PALINOLOGIA, Mem. Extraord. 1, 137–47.Google Scholar
Clough, C. T., Barrow, G., Crampton, C. B., Maufe, H. B., Bailey, E. B. & Anderson, E. M. 1910. The Geology of East Lothian, 2nd edn. Mem. Geol. Surv. Gt. Br.Google Scholar
Collinson, M. E. & Scott, A. C. 1987a. Implications of vegetational change through the geological record on models for coal-forming environments. In Scott, A. C. (ed) Coal and Coal-bearing Strata: Recent Advances, 6785. Geol. Soc. Spec. Pub. 32.Google Scholar
Collinson, M. E. & Scott, A. C. 1987b. Factors controlling the organisation and evolution of ancient plant communities. In Gee, J. H. R. & Giller, P. S. (eds) Organisation of Communities Past and Present, 399420. Oxford: Blackwell.Google Scholar
Cope, M. J. & Chaloner, W. G. 1980. Fossil charcoal as evidence of: past atmospheric composition. NATURE 283, 647–9.CrossRefGoogle Scholar
Cope, M. J. & Chaloner, W. G. 1985. Wildfire: an interaction of biological and physical processes. In Tiffney, B. H. (ed) Geological Factors and the Evolution of Plants, 257–77. New Haven: Yale University Press.Google Scholar
Creber, G. T. & Chaloner, W. G. 1984. Influence of environmental factors on the wood structure of living and fossil trees. BOT REV 50, 357448.CrossRefGoogle Scholar
Dahlquist, R. L. & Knoll, J. W. 1978. Inductively-coupled plasma-atomic emission spectrometry analysis of biological materials and soils for major, trace and ultra-trace elements. APPL SPECTROSC 32, 130.CrossRefGoogle Scholar
Davies, A. 1974. The Lower Carboniferous (Dinantian) sequence at Spilmersford, East Lothian, Scotland. BULL GEOL SURV GT BR 45, 138.Google Scholar
Davies, A., McAdam, A. D. & Cameron, I. B. 1986. Geology of the Dunbar District. Mem. Geol. Surv. Gr. Br. London: H.M.S.O.Google Scholar
Day, T. C. 1928. The volcanic vents on the shore between North Berwick and Tantallon Castle. TRANS EDINB GEOL SOC 12, 4152.CrossRefGoogle Scholar
DiMichele, W. A. & Phillips, T. L. 1985. Arborescent lycopod reproduction and paleoecology in a coal-swamp environment of late Middle Pennsylvanian age (Herrin Coal, Illinois U.S.A.). REV PALAEOBOT PALYNOL 44, 126.CrossRefGoogle Scholar
DiMichele, W. A. & Phillips, T. L. 1988. Paleoecology of the Middle Pennsylvanian-age Herrin Coal swamp (Illinois) near a contemporaneous river system, the Walshville paleochannel. REV PALAEOBOT PALYNOL 56, 151–76.CrossRefGoogle Scholar
DiMichele, W. A., Phillips, T. L. & Olmstead, R. G. 1987. Opportunistic evolution: abiotic environmental stress and the fossil record of plants. REV PALAEOBOT PALYNOL 50, 151–78.CrossRefGoogle Scholar
Duff, B. 1980. The palaeomagnetism of Jersey volcanics and dykes, and the Lower Palaeozoic apparent polar wander path for Europe. GEOPHYS J R ASTR SOC 60, 355–75.CrossRefGoogle Scholar
Fisher, R. V. 1977. Erosion by volcanic base-surge density currents: U-shaped channels. BULL GEOL SOC AM 88, 1287–97.2.0.CO;2>CrossRefGoogle Scholar
Fisher, R. V. & Schmincke, H.-U. 1984. Pyroclastic Rocks. Berlin: Springer Verlag.CrossRefGoogle Scholar
Fisher, R. V. & Waters, A. C. 1970. Base-surge bedforms in maar volcanoes. AM J SCI 268, 157–80.CrossRefGoogle Scholar
Flenley, J. R. 1979. The Equatorial Rain Forest: A Geological History. London: Butterworths.Google Scholar
Flenley, J. R. & Richards, K. 1982. The Krakatoa Centenary Expedition Final Report. Miscellaneous Series 25, Hull Univ. Dept. Geography.Google Scholar
Flenley, J. R., Richards, K., Whittaker, R. & Wiriadinata, H. 1984. The flora and vegetation of Krakatau. PROG PHYS GEOG 8, 6181.Google Scholar
Francis, E. H. 1970. Bedding in Scottish (Fifeshire) tuff pipes and its relevance to maars and calderas. BULL VOLCANOL 34, 697712.CrossRefGoogle Scholar
Francis, E. H. 1983a. Carboniferous. In Craig, G. Y. (ed) Geology of Scotland, 2nd edn, 253–96. Edinburgh: Scottish Academic Press.Google Scholar
Francis, E. H. 1983b. Carboniferous-Permian igneous rocks. In Craig, G. Y. (ed) Geology of Scotland, 2nd edn, 297326. Edinburgh: Scottish Academic Press.Google Scholar
Fritz, W. J. 1980. Stumps transported and deposited upright by Mount Saint Helens ash flows. GEOLOGY 8, 583–8.2.0.CO;2>CrossRefGoogle Scholar
Fritz, W. J. 1986. Plant taphonomy in areas of explosive volcanism. In Broadhead, T. W. (ed) Land Plants: Notes for a Short Course, 19. Univ. Tennessee Dept. Geol. Sci. Stud. Geol. 15.Google Scholar
Fritz, W. J. & Harrison, S. 1985. Transported trees from the 1982 Mount St. Helens sediment flows: their use as paleocurrent indicators. SEDIMENT GEOL 42, 4964.CrossRefGoogle Scholar
Geikie, A. 1897. The Ancient Volcanoes of Great Britain. London.CrossRefGoogle Scholar
George, T. N., Johnson, G. A. L., Mitchell, M., Prentice, J. E., Ramsbottom, W. H. C., Sevastopulo, G. D. & Wilson, R. B. 1976. A Correlation of the Dinantian Rocks in the British Isles. Geol. Soc. Lond. Spec. Rep. 7.Google Scholar
Goldberg, E. D. 1985. Black Carbon in the Environment: Properties and Distribution. New York: Wiley.Google Scholar
Gordon, W. T. 1927. The coastal strip between North Berwick and Cheese Bay, Gullane. PROC GEOL ASS 38, 441–6.Google Scholar
Gordon, W. T. 1938. On Tetrastichia bupatides—a Carboniferous pteridosperm from East Lothian. TRANS R SOC EDINBURGH 59, 351–70.CrossRefGoogle Scholar
Gordon, W. T. 1941. On Salpingostoma dasu: a new Carboniferous seed from East Lothian. TRANS R SOC EDINBURGH 60, 427–64.CrossRefGoogle Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. PALEOBIOLOGY 11, 212.CrossRefGoogle Scholar
Gould, S. J. & Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. PALEOBIOLOGY 3, 115–51.Google Scholar
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. BIOMETRIKA 52, 325–38.CrossRefGoogle Scholar
Gower, J. C. 1971. A general coefficient of similarity and some of its properties. BIOMETRICS 27, 857–72.CrossRefGoogle Scholar
Gower, J. C. & Digby, P. G. N. 1981. Expressing complex relationships in two dimensions. In Barnett, V. (ed) Interpreting Multivariate Data, 83118. New York: Wiley.Google Scholar
Gower, J. C. & Ross, G. J. S. 1969. Minimum spanning trees and single linkage cluster analysis. JL R STATIST SOC C 18, 5464.Google Scholar
Grayson, R. F. & Oldham, L. 1987. A new structural framework for the northern British Dinantian as a basis for oil, gas and mineral exploration. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 3359. New York: Wiley.Google Scholar
Grieves, I. 1981. Aspects of the geology of some of the Lower Carboniferous volcanic pipes of North Berwick, Scotland. BSc thesis, Leeds University.Google Scholar
Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. AM NAT 111, 1169–94.CrossRefGoogle Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. & Walters, R. 1982. A Geologic Time-scale. Cambridge: Cambridge University Press.Google Scholar
Harris, T. M. 1958. Forest fire in the Mesozoic. J ECOL 46, 447–53.CrossRefGoogle Scholar
Harris, T. M. 1981. Burnt ferns in the English Wealden. PROC GEOL ASS 92, 4758.CrossRefGoogle Scholar
Harrison, S. & Fritz, W. J. 1982. Depositional features of March 1982 Mount St. Helens sediment flows. NATURE 299, 720–2.CrossRefGoogle Scholar
Haszeldine, R. S. 1984. Carboniferous North Atlantic palaeogeography: stratigraphic evidence for rifting, not megashear or subduction. GEOL MAG 121, 443–63.CrossRefGoogle Scholar
Hickman, A. H. & Wright, A. E. 1983. Geochemistry and stratigraphical correlation of slates, limestones and quartzites of the Appin Group, Argyll. TRANS R SOC EDINBURGH 73, 251–78.CrossRefGoogle Scholar
Higgs, K. T., McPhilemy, B., Keegan, J. B. & Clayton, G. 1988. New data on palynological boundaries within the Irish Dinantian. REV PALAEOBOT PALYNOL 56, 61–8.CrossRefGoogle Scholar
Howie, R. D. 1985. Carboniferous evaporites in Atlantic Canada. C R 9me CONG INT STRAT GÉOL CARB (Urbana, 1979), 93–4.Google Scholar
Hurley, N. F. & Voo, R. van der. 1987. Palaeomagnetism of Upper Devonian reefal limestones, Cannarig Basin, Western Australia. GEOL SOC AMER BULL 98, 138–46.2.0.CO;2>CrossRefGoogle Scholar
Johnson, G. A. L. & Tarling, D. H. 1985. Continental convergence and closing seas during the Carboniferous. In Escobedo, J. L. et al. (eds) C R 10me CONG INT STRAT GÉOL CARB (Madrid, 1983), 163–8.Google Scholar
Joy, K. W., Willis, A. J.,& Lacey, W. S. 1956. A rapid cellulose peel technique in palaeobotany. ANN BOT (NS) 20, 635–7.CrossRefGoogle Scholar
Karowe, A. L. & Jefferson, T. H. 1987. Burial of trees by eruptions of Mount St. Helens, Washington: implications for the interpretation of fossil forests. GEOL MAG 124, 191204.CrossRefGoogle Scholar
Kelling, G. 1960. North Berwick. In Mitchell, G. H., Walton, E. K. & Grant, D. (eds) Edinburgh Geology: An Excursion Guide, 7080. Edinburgh: Oliver & Boyd.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. In Nitecki, M. (ed) Extinctions, 2168. Chicago: Chicago University Press.Google Scholar
Kokelaar, P. 1986. Magma-water interactions in subaqueous and emergent basaltic volcanism. BULL VOLCANOL 48, 275–90.CrossRefGoogle Scholar
Leahy, G. D., Spoon, M. D. & Retallack, G. J. 1985. Linking impacts and plant extinctions. NATURE 318, 318.CrossRefGoogle Scholar
Leeder, M. R. 1982. Upper Palaeozoic basins of the British Isles — Caledonide inheritance versus Hercynian plate margin processes. Q JL GEOL SOC LOND 139, 479–91.CrossRefGoogle Scholar
Leeder, M. R. 1987. Plate tectonics, palaeogeography and sedimentation in Lower Carboniferous Europe. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 120. New York: Wiley.Google Scholar
Leeder, M. R. 1988. Recent developments in Carboniferous geology: a critical review with implications for the British Isles and N.W. Europe. PROC GEOL ASS 99, 73100.CrossRefGoogle Scholar
Leys, C. A. 1982. Volcanic and sedimentary processes in phreatomagmatic volcanoes. PhD thesis, Leeds University.Google Scholar
Leys, C. A. 1983. Volcanic and sedimentary processes during formation of the Saefell tuff-ring, Iceland. TRANS R SOC EDINBURGH 74, 1522.CrossRefGoogle Scholar
Loftus, G. W. F. 1985. The petrology and depositional environments of the Dinantian Burdiehouse Limestone Formation of Scotland: their relevance to the accumulation of the Oil-Shale Group. PhD thesis, London University.Google Scholar
Loftus, G. W. F. & Greensmith, J. T. 1988. The lacustrine Burdiehouse Limestone Formation—a key to the deposition of the Dinantian oil shales of Scotland. In Fleet, A. J., Kelts, K. & Talbot, M. R. (eds) Lacustrine Petroleum Source Rocks, 219–34. Oxford: Blackwell.Google Scholar
Long, A. G. 1976. Calathopteris heterophylla gen. et spec, nov., a Lower Carboniferous pteridosperm bearing two kinds of petioles. TRANS R SOC EDINBURGH 69, 329–36.Google Scholar
Long, A. G. 1977a. Some Lower Carboniferous pteridosperm cupules bearing ovules and microsporangia. TRANS R SOC EDINBURGH 70, 111.Google Scholar
Long, A. G. 1977b. Lower Carboniferous pteridosperm cupules and the origin of the angiosperms. TRANS R SOC EDINBURGH 70, 1335.Google Scholar
Long, A. G. 1979. The resemblance between the Lower Carboniferous cupules Hydrasperma cf. tenuis Long and Sphenopteris bifida Lindley & Hutton. Trans R Soc Edinburgh 70, 129–37.Google Scholar
Long, A. G. 1984. Oxroadopteris parvus gen. et spec, nov.: a protostelic Lower Carboniferous pteridosperm from Oxroad Bay, East Lothian, Scotland. TRANS R SOC EDINBURGH 75, 383–9.CrossRefGoogle Scholar
Long, A. G. 1986. Observations on the Lower Carboniferous lycopod Oxroadia gracilis Alvin. TRANS R SOC EDINBURGH 77, 127–42.CrossRefGoogle Scholar
Long, A. G. 1987. Observations on Eristophyton Zalessky, Lyginorachis waltoni Calder, and Cladoxylon edromense sp. nov. from the Lower Carboniferous Cementstone Group of Scotland. TRANS R SOC EDINBURGH 78, 7384.CrossRefGoogle Scholar
Lorenz, V. 1973. On the formation of maars. BULL VOLCANOL 37, 183204.CrossRefGoogle Scholar
Lorenz, V. 1986. On the growth of maars and diatremes and its relevance to the formation of tuff-rings. BULL VOLCANOL 48, 265–74.CrossRefGoogle Scholar
MacDonald, R., Thomas, J. E. & Rizzello, S. A. 1977. Variations in basalt chemistry with time in the Midland Valley province during the Carboniferous and Permian. SCOTT J GEOL 13, 1122.CrossRefGoogle Scholar
MacDonald, R., Gass, K. N., Thorpe, R. S. & Gass, I. G. 1984. Geochemistry and petrogenesis of the Derbyshire Carboniferous basalts. Q JL GEOL SOC LOND 141, 147–60.CrossRefGoogle Scholar
MacGregor, M. & MacGregor, A. G. 1948. The Midland Valley of Scotland, 2nd edn. British Regional Geology Series. Edinburgh: Geological Survey.Google Scholar
Martin, N. R. 1955. Lower Carboniferous volcanism near North Berwick, Scotland. BULL GEOL SURV GT BR 7, 90–9.Google Scholar
Matte, P. 1986. La cha ἶne Varisque parmi les chaἶnes Paléozoique péri-Atlantiques, modèle d'évolution et position des grands blocs continentaux au Permo-Carbonifère. BULL SOC GÉOL FRANCE 8, 924.CrossRefGoogle Scholar
McAdam, A. D. 1975. North Berwick. In Craig, G. Y. & Duff, P. M. D. (eds), The Geology of the Lothians and South-East Scotland, 7992. Edinburgh: Scottish Academic Press.Google Scholar
McAdam, A. D. & Tulloch, W. 1985. Geology of the Haddington District. Mem. Geol. Surv. Gr. Br. London: H.M.S.O.Google Scholar
Mitchell, G. H. & Mykura, W. 1962. The Geology of the Neighbourhood of Edinburgh, 3rd edn. Mem. Geol. Surv. Gr. Br. Edinburgh: Geological Survey.Google Scholar
Moore, J. G. 1967. Base-surge in recent volcanic eruptions. BULL VOLCANOL 30, 337–63.CrossRefGoogle Scholar
Moral, R. del & Clampitt, C. A. 1985. Growth of native plant species on recent volcanic substrates from Mount St. Helens. AM MIDL NAT 114, 374–83.CrossRefGoogle Scholar
Neves, R., Gueinn, K. J., Clayton, G., Ioannides, N. S. & Neville, R. S. W. 1972. A scheme of miospore zones for the British Dinantian. C R 6me CONGR INT STRAT GÉOL CARB (Krefeld, 1971) 7, 347–53.Google Scholar
Neves, R., Gueinn, K. J., Clayton, G., Ioannides, N. S., Neville, R. S. W. & Kruszewska, K. 1973. Palynological correlations within the Lower Carboniferous of Scotland and northern England. TRANS R SOC EDINBURGH 69, 2370.CrossRefGoogle Scholar
Oilier, C. D. 1967. Maars: their characteristics, varieties and definition. BULL VOLCANOL 31, 4573.CrossRefGoogle Scholar
Payne, A. W. et al. 1987. Genstat 5 Reference Manual. Oxford: Oxford University Press.Google Scholar
Pettitt, J. M. 1969. Pteridophytic features in some Lower Carboniferous seed megaspores. BOT J LINN SOC 62, 233–9.Google Scholar
Phillips, T. L., Peppers, R. A. & DiMichele, W. A. 1985. Stratigraphic and inter-regional changes in Pennsylvanian coal-swamp vegetation: environmental inferences. INT J COAL GEOL 5, 43109.CrossRefGoogle Scholar
Pianka, E. R. 1970. On r- and k-selection. AM NAT 104, 592–7.CrossRefGoogle Scholar
Raymond, A. 1985. Floral diversity, phytogeography and climatic amelioration during the Early Carboniferous (Dinantian) PALEOBIOLOGY 11, 293309.CrossRefGoogle Scholar
Raymond, A., Kelley, P. H. & Lutken, C. B. 1989. Polar glaciers and life at the equator: the history of Dinantian and Namurian (Carboniferous) climate. GEOLOGY 17, 408–11.2.3.CO;2>CrossRefGoogle Scholar
Raymond, A., Parker, W. C. & Parrish, J. T. 1985. Phytogeography and paleoclimate of the Early Carboniferous. In Tiffney, B. (ed) Geologic Factors and the Evolution of Plants, 169222. New Haven: Yale University Press.Google Scholar
Read, W. A. & Johnson, S. R. H. 1967. The sedimentology of sandstone formations within the Upper Old Red Sandstone and lowest Calciferous Sandstone Measures west of Stirling. SCOTT J GEOL 3, 247–67.CrossRefGoogle Scholar
Retallack, G. J. 1981. Fossil soils: indicators of ancient terrestrial environments. In Niklas, K. J. (ed) Paleobotany, Paleoecology and Evolution 1, 55102. New York: Praeger.Google Scholar
Retallack, G. J. 1985a. Fossil soils as grounds for interpreting the advent of large plants and animals on land. PHIL TRANS R SOC LOND B 309, 105–42.Google Scholar
Retallack, G. J. 1985b. Reconstructions of Scottish Early Carboniferous seed ferns. AM J BOT 72, 898.Google Scholar
Retallack, G. J. & Dilcher, D. L. 1988. Reconstructions of selected seed ferns. ANN MO BOT GDN 75, 1010–57.CrossRefGoogle Scholar
Rex, G. M. 1986. The preservation and palaeoecology of the Lower Carboniferous silicified plant deposits at Esnost, near Autun, France. GEOBIOS 19, 773800.CrossRefGoogle Scholar
Rex, G. M. & Scott, A. C. 1987. The sedimentology, palaeoecology and preservation of the Lower Carboniferous plant deposits at Pettycur, Fife, Scotland. GEOL MAG 124, 4366.CrossRefGoogle Scholar
Robinson, J. M. 1989. Phanerozoic O2 variation, fire, and terrestrial ecology. GLOBAL PLANET CH 75, 223–40.CrossRefGoogle Scholar
Rock, N. M. S. 1985. Value of chemostratigraphical correlation in metamorphic terrains: an illustration from the Colonsay Limestone, Inner Hebrides, Scotland. Trans R Soc Edinburgh 76, 515–7.CrossRefGoogle Scholar
Rock, N. M. S. 1986. The geochemistry of Lewisian marbles. In Tarney, J. & Park, R. G. (eds), Spec. Pub. Geol. Soc. Lond.Google Scholar
Rock, N. M. S. & Waterhouse, K. 1986. Value of chemostratigraphical correlation in metamorphic terrains: an illustration from the Shinness and Armadale marbles, Sutherland, Scotland. PROC GEOL ASS 97, 347–56.CrossRefGoogle Scholar
Rolfe, W. D. I., Durant, G. P., Fallick, A. E., Hall, A. J., Large, D. J., Scott, A.,Smithson, I. R. & Walkden, G. M. in press. An early terrestrial biota preserved by Visean vulcanicity in Scotland. In Lockley, M. (ed.) Volcanism and Fossil Biotas: mplications for Preservation, Evolution and Extinction. Geol. Soc. Am. Spec. Paper no. 244.Google Scholar
Rothwell, G. W. & Scott, A. C. 1985. Ecology of Lower Carboniferous plant remains from Oxroad Bay, East Lothian, Scotland. AM J BOT 72, 899.Google Scholar
Rowley, D. B., Raymond, A.Parrish, J. T., Lottes, A. L., Scotese, C. R. & Ziegler, A. M. 1985. Carboniferous paleogeographic, phytogeographic and paleoclimatic reconstructions. INT J COAL GEOL 5, 742.CrossRefGoogle Scholar
Scheckler, S. E. 1986. Geology, floristics and paleoecology of Late Devonian coal-swamps from Appalachian Laurentia (U.S.A.). ANN SOC GÉOL BELG 109, 209–22.Google Scholar
Schmid, R. 1981. Descriptive nomenclature and classification of pyroclastic deposits and fragments: recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology 9, 41–3.2.0.CO;2>CrossRefGoogle Scholar
Scotese, C. R. 1986. Phanerozoic Reconstructions: A New Look at the Assembly of Asia. Univ. Texas Inst. Geophys. Tech. Rep. 66.Google Scholar
Scott, A. C. 1989. Preservation, evolution and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. In Lockley, M. (ed.) Volcanism and Fossil Biotas. Geol. Soc. Am. Spec. Paper No. 244.Google Scholar
Scott, A. C. & Galtier, J. 1985. Distribution and ecology of early ferns. TRANS R SOC EDINBURGH 86, 141–9.Google Scholar
Scott, A. C. & Galtier, J. 1988. A new Lower Carboniferous flora from East Lothian, Scotland. PROC GEOL ASS 99, 141–51.CrossRefGoogle Scholar
Scott, A.C., Galtier, J. & Clayton, G. 1984. Distribution of anatomically-preserved floras in the Lower Carboniferous in western Europe. TRANS R SOC EDINBURGH 75, 311–40.CrossRefGoogle Scholar
Scott, A. C. & Rex, G. M. 1987. The accumulation and preservation of Dinantian plants from Scotland and its borders. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 329–44. New York: Wiley.Google Scholar
Smith, A. G., Hurley, A. M. & Briden, J. C. 1981. Phanerozoic Palaeocontinental World Maps. Cambridge: Cambridge University Press.Google Scholar
Spicer, R. A., Burnham, R. J., Grant, P. & Glicken, H. 1985. Pityrogramma calomelanos, the primary, post-eruption colonizer of Volcán Chichonal, Chiapas, Mexico. AM FERN J 75, 15.CrossRefGoogle Scholar
Tourtelot, H. A. 1979. Black shale—its deposition and diagenesis CLAYS CLAY MINER 27, 313–21.CrossRefGoogle Scholar
Upton, B. G. J. 1982. Carboniferous volcanism. In Sutherland, D. A. (ed) The Igneous Rocks of the British Isles. New York: Wiley.Google Scholar
Valentine, K. W. G. & Dalrymple, J. B. 1976. Quaternary buried palaeosols: a critical review. QUAT RES 6, 209–22.CrossRefGoogle Scholar
Whittaker, R. J., Bush, M. B. & Richards, K. 1989. Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. ECOL MONOGR 59, 59123.CrossRefGoogle Scholar
Wilson, P. & Bateman, R. M. 1986. Nature and palaeoenvironmental significance of a buried soil sequence at Magilligan Foreland, Northern Ireland. BOREAS 15, 137–53.CrossRefGoogle Scholar
Wilson, P. & Bateman, R. M. 1987. Pedogenic and geomorphic evolution of a buried dune palaeocatena at Magilligan Foreland, Northern Ireland. CATENA 14, 501–17.CrossRefGoogle Scholar
Wright, V. P. 1987. The ecology of two early Carboniferous paleosols. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 345–58. New York: Wiley.Google Scholar
Zwan, C. J. van der. 1981. Palynology, phytogeography and climate of the Lower Carboniferous. PALAEOGEOG PALAEOCLIM PALAEOECOL 33, 279310.CrossRefGoogle Scholar
Zwan, C. J. van der, Boulter, M. C. & Hubbard, R. N. L. B. 1985. Climatic change during the Lower Carboniferous in Euramerica, based on multivariate statistical analysis of palynological data. PALAEOGEOG PALAEOCLIM PALAEOECOL 52, 120.CrossRefGoogle Scholar