Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:30:46.266Z Has data issue: false hasContentIssue false

Resolving views on Antarctic Neogene glacial history – the Sirius debate

Published online by Cambridge University Press:  07 May 2013

P. J. Barrett*
Affiliation:
Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand. Email: peter.barrett@vuw.ac.nz

Abstract

The discovery of marine Pliocene diatoms in warm-based glacial deposits (now termed the Sirius Group) high in the Transantarctic Mountains in the 1980s began a three-decade-long controversy over the stability of the East Antarctic Ice Sheet. Their presence implied that this ice sheet had collapsed as recently as three million years ago to allow their deposition in shallow interior seas, followed by transport and deposition from an expanded over-riding ice sheet. Though the glacial deposits included clasts with older diatoms, no evidence of clasts with Pliocene diatoms was published, but the hypothesis gained wide acceptance. Increasing knowledge of ice sheet behaviour and the antiquity and stability of the Transantarctic Mountains, along with new techniques for dating age and denudation rates for landscapes, has led to a more likely alternative hypothesis – that the high-level Sirius Group deposits pre-date Transantarctic Mountains uplift and their Pliocene diatoms are atmospheric contaminants. Surveys have shown that marine diatoms from the Antarctic margin and the Southern Ocean are indeed reaching the surface of the ice sheet and blowing through the mountains, with permafrost processes providing opportunities for contamination. Modelling and geological evidence is now consistent with a stable East Antarctic Ice Sheet in the interior for the last 14 Ma, with some retreat around the margins and periodic collapse of the West Antarctic ice sheet in Pliocene times.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

14. References

Ackert, R. P. Jr. & Kurz, M. D. 2004. Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology. Global and Planetary Change 42, 207–25.Google Scholar
Alt, J. K.Astapenki, P. & Ropar, N. J. Jr. 1959. Some aspects of the Antarctic atmospheric circulation in 1958. IGY General Report Series 4. Washington, D.C.: National Academy of Sciences. 113 pp.Google Scholar
Armstrong, R. L. 1978. K–Ar dating: Late Cenozoic McMurdo Volcanic Group and dry valley glacial history, Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics 23, 685–98.Google Scholar
Armstrong, R. L., Hamilton, W. & Denton, G. H. 1968. Glaciation in Taylor Valley, Antarctica, older than 2.7 million years. Science 159, 187189.Google Scholar
Ashworth, A. & Lewis, A. 2011. The Miocene terrestrial and lacustrine biota of Antarctica (Abstract). Scientific Committee for Antarctic Research: 11th International Symposium on Antarctic Earth Sciences, Edinburgh. PS20.4.Google Scholar
Askin, R. A. & Markgraf, V. 1986. Palynomorphs from the Sirius Formation, Dominion Range, Antarctica. Antarctic Journal of the United States 21, 3435.Google Scholar
Bamber, J. L., Gomez-Dans, J. L. & Griggs, J. A. 2009. A new 1 km Digital Elevation Model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and Methods. The Cryosphere 3, 101–11.Google Scholar
Barrett, P. J. (ed.) 1989. Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound, Antarctica. NZ Department of Scientific and Industrial Research Bulletin 245. 254 pp.Google Scholar
Barrett, P. J. 2007. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land Coast, Cape Roberts Project, Antarctica. In Hambrey, M. J., Christoffersen, P., Glasser, N. F. & Hubbart, B. (eds) Glacial Processes and Products. International Association of Sedimentologists Special Publication 39, 259–87. Malden, Massachusetts, USA, Oxford, UK & Carlton, Victoria, Australia: Blackwell Publishing, for the International Association of Sedimentologists.Google Scholar
Barrett, P. J. 2009. Cenozoic glaciation of Antarctica – a history from the margin. In Florindo, F. & Siegert, M. J. (eds) Antarctic Climate Evolution. Elsevier Developments in Earth and Environmental Sciences 39, 3483.Google Scholar
Barrett, P. J., Adams, C. J., McIntosh, W. C., Swisher, C. C. III & Wilson, G. S. 1992. Geochronological evidence supporting Antarctic deglaciation three million years ago. Nature 359, 816–18.Google Scholar
Barrett, P. J., Bleakley, N. L., Dickinson, W. W., Hannah, M. H. & Harper, M. A. 1997. Distribution of siliceous microfossils on Mount Feather, Antarctica, and the age of the Sirius Group. In Ricci, C. A. (ed.) The Antarctic Region: geological evolution and processes, 763–70. Siena, Italy: Terra Antartica Publications.Google Scholar
Barrett, P. J. & Powell, R. D. 1982. Middle Cenozoic glacial beds at Table Mountain, South Victoria Land. In Craddock, C. (ed.) Antarctic Geoscience, 1029–67. Madison: University of Wisconsin Press.Google Scholar
Behrendt, J. C., Cooper, A. K., Wilch, T. I., Denton, G. H., McIntosh, W. C. & Lux, D. 1994. Minimal Plio–Pleistocene uplift of the dry valleys sector of the Transantarctic Mountains: A key parameter in ice-sheet reconstructions: Comment and Reply. Geology 22, 668–70.Google Scholar
Behrendt, J. C. & Cooper, A. K. 1991. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing. Geology 19, 315–19.Google Scholar
Bertler, N. A. N. & Barrett, P. J. 2010. Vanishing polar ice sheets. In Dodson, J. (ed.) Changing Climates, Earth Systems and Society. International Year of Planet Earth, 4983. Dordrecht: Springer.Google Scholar
Bleakley, N. L. 1996. Geology of the Sirius Group at Mount Feather and Table Mountain, South Victoria Land, Antarctica. M.Sc. Thesis, Victoria University of Wellington, New Zealand. 273 pp.Google Scholar
Brady, H. T. & Martin, H. 1979. Ross Sea region in the middle Miocene: a glimpse into the past. Science 203, 437–38.Google Scholar
Brady, H. T. & McKelvey, B. C. 1979. The interpretation of a Tertiary Tillite at Mount Feather, southern Victoria Land, Antarctica. Journal of Glaciology 22, 189–93.Google Scholar
Burckle, L. H., Gayley, R. I., Ram, M. & Petit, J.-R. 1988. Diatoms in Antarctic ice cores: Some implications for the glacial history of Antarctica. Geology 16, 326–9.Google Scholar
Burckle, L. H. & Potter, N. Jr. 1996. Pliocene–Pleistocene diatoms in Paleozoic and Mesozoic sedimentary and igneous rocks from Antarctica: a Sirius problem solved. Geology 24, 235–38.Google Scholar
Cape Roberts Science Team. 2000. Studies from the Cape Roberts Project, Ross Sea, Antarctica. Initial Report on CRP-3. Terra Antarctica 7, 1209.Google Scholar
Clapperton, C. M. & Sugden, D. E. 1990. Late Cenozoic glacial history of the Ross embayment, Antarctica. Quaternary Science Reviews 9, 253–72.Google Scholar
Connelley, W. M. & King, J. C. 1993. Atrmospheric water vapour transport to Antarctica inferred from radiosonde data. Quarterly Journal of the Royal Meteorological Society 119, 325–42.Google Scholar
DeConto, R. M., Pollard, D. & Kowalewski, D. E. 2012. Modeling Antarctic ice sheet and climate variations during Marine Isotope Stage 31. Global and Planetary Change 88–89, 4552.Google Scholar
DeConto, R. M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–49.Google Scholar
Denton, G. H., Armstrong, R. L. & Stuiver, M. 1971. The Cenozoic glacial history of Antarctica. In Turekian, K. K. (ed.) The Late Cenozoic Glacial Ages, 267306. New Haven, Connecticut: Yale University Press.Google Scholar
Denton, G. H., Prentice, M. L., Kellogg, D. E. & Kellogg, T. B. 1984. Late Tertiary history of the Antarctic ice sheet: evidence from the Dry Valleys. Geology 12, 363–67.Google Scholar
Denton, G. H., Bockheim, J. G., Wilson, S. C., Leide, J. E. & Andersen, B. G. 1989. Late Quaternary ice-surface fluctuations of Beardmore Glacier, Transantarctic Mountains, Quaternary Research 31, 183209.Google Scholar
Denton, G. H., Prentice, M. & Burckle, L. H. 1991. Cenozoic history of the Antarctic ice sheet. In Tingey, R. J. (ed.) The Geology of Antarctica, 365433. Oxford, UK: Oxford University Press.Google Scholar
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L. & Wilch, T. I. 1993. East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valley perspective. Geografiska Annaler 75A, 155204.Google Scholar
Denton, G. H. & Hughes, T. H. 1981. The Last Great Ice Sheets. New York: Wiley-Interscience. 484 pp.Google Scholar
Dolan, A. M.Haywood, A. M., Hill, D. J., Dowsett, H. J., Hunter, S. J., Lunt, D. J. & Pickering, S. J. 2011. Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeography, Palaeoclimatology, Palaeoecology 309, 98110.Google Scholar
Dowsett, H. J. & Cronin, T. M. 1990. High eustatic sea level during the middle Pliocene: Evidence from the southeastern U.S. Atlantic coastal Plain. Geology 18, 435–38.Google Scholar
Drewry, D. J. 1983. Antarctica: Glaciological and Geophysical Folio. Cambridge, UK: Scott Polar Research Institute.Google Scholar
Ebinger, C. J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu–Rusizi rift, Africa. Tectonics 8, 117–33.Google Scholar
Fielding, C. R., Browne, G. H., Field, B., Florindo, F., Harwood, D. M., Krissek, L. A., Levy, R., Panter, K., Passchier, S. & Pekar, S. F. 2011. Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: a long-term, ice-proximal record of Early to Mid-Miocene climate, sea-level and glacial dynamism. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 337–52.Google Scholar
Fitzgerald, P. G. 1992. The Transantarctic Mountains of southern Victoria Land: The application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11, 634–62.Google Scholar
Fitzgerald, P. G. 2002. Tectonics and landscape evolution of the Antarctic plate since the breakup of Gondwana, with an emphasis on the West Antarctic Rift System and the Transantarctic Mountains. Royal Society of New Zealand Bulletin 35, 453–69.Google Scholar
Fitzgerald, P. G. & Gleadow, A. J. W. 1988. Fission track geochronology, tectonics and structure of the Transantarctic Mountains of northern Victoria Land, Antarctica. Isotope Geoscience 73, 169–98.Google Scholar
Fleck, R. J., Jones, L. M. & Behling, R. E. 1972. K–Ar dates of the McMurdo Volcanics and their relation to the glacial history of Wright Valley. Antarctic Journal of the United States 7, 244–46.Google Scholar
Fountain, A. G., Nylen, T. H., Monaghan, A., Basagic, H. J. & Bromwich, D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology 30, 633–42.Google Scholar
Francis, J. E. & Hill, R. S. 1996. Fossil plants from the Pliocene Sirius Group, Transantarctic Mountains: Evidence for climate from growth rings and fossil leaves. Palaios 11, 389–96.Google Scholar
Geitzenauer, K. R., Margolis, S. V. & Edwards, D. S. 1968. Evidence consistent with Eocene glaciation in a south Pacific deep sea sedimentary core. Earth and Planetary Science Letters 4, 173–77.Google Scholar
Gersonde, R., Kyte, F. T., Bleil, U., Diekmann, B., Flores, J. A., Gohl, K., Grahl, G., Hagen, R., Kuhn, G., Sierro, F. J., Volker, D., Abelmann, A. & Bostwick, J. A. 1997. Geological record and reconstruction of the Late Pliocene impact of the Eltanin Asteroid in the Southern Ocean. Nature 390, 357–63.Google Scholar
Gersonde, G., Kyte, F. T., Frederichs, T., Bleil, U., Schenke, H.-W. & Kuhn, G. 2005. The late Pliocene impact of the Eltanin asteroid into the Southern Ocean – Documentation and environmental consequences. Geophysical Research Abstracts 7. SRef-ID: 1607-7962/gra/EGU05-A-02449.Google Scholar
Gleadow, A.J.W. & Fitzgerald, P. G. 1987. Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth and Planetary Science Letters 82, 114.Google Scholar
Griggs, J. A. & Bamber, J. L. 2009. A new 1 km Digital Elevation Model of Antarctica derived from combined radar and laser data – Part 2: Validation and Error Estimates. The Cryosphere 3, 113–23.Google Scholar
Hambrey, M. J., Webb, P.-N., Harwood, D. M. & Krissek, L. A. 2003. Neogene glacial record from the Sirius Group of the Shackleton Glacier region, central Transantarctic Mountains, Antarctica. GSA Bulletin 115, 9941015.Google Scholar
Hambrey, M. J. & McKelvey, B. C. 2000. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region. Geology 28, 887–90.Google Scholar
Hansen, J. E. 1988. The Greenhouse Effect: Impacts on Current Global Temperature and Regional Heat Waves. Testimony to U.S. Senate Committee on Energy and Natural Resources, June 23, 1988. Washington, DC.Google Scholar
Hansen, J. E., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russell, G. & Stone, P. 1988. Global Climate Changes as Forecast by Goddard Institute for Space Studies 3-Dimensional Model. Journal of Geophysical Research 93, 9341–64.Google Scholar
Harwood, D. M. 1983. Diatoms from the Sirius Formation, Transantarctic Mountains. Antarctic Journal of the United States 18, 98100.Google Scholar
Harwood, D. M. 1986 Diatom biostratigraphy and paleoecology with a Cenozoic History of Antarctic Ice Sheets. PhD Dissertation, Ohio State University, Columbus, Ohio. 592 pp.Google Scholar
Harwood, D. M., Scherer, R. P. & Webb, P.-N. 1989. Multiple Miocene marine productivity events in West Antarctica as recorded in upper Miocene sediments beneath the Ross Ice Shelf (Site J-9). Marine Micropaleontology 15, 91115.Google Scholar
Harwood, D. M. & Maruyama, T. 1992. Middle Eocene to Pleistocene diatom biostratigraphy of Southern Ocean sediments from the Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientific Results 120(2), 683734.Google Scholar
Harwood, D. M. & Webb, P.-N. 1998. Glacial transport of diatoms in the Antarctic Sirius Group: Pliocene Refrigerator. GSA Today 8(4), 18.Google Scholar
Hayes, D. E., Frakes, L. A., et al. 1975. Initial Reports of the Deep Sea Drilling Project. 28. Washington, D.C.: US Government Printing Office. 1012 pp.Google Scholar
Haywood, A. M., Valdes, P. J., Sellwood, B. W. & Kaplan, J. O. 2002a. Antarctic climate during the middle Pliocene: model sensitivity to ice sheet variation. Palaeogeography, Palaeoclimatology, Palaeoecology 182, 93115.Google Scholar
Haywood, A. M., Valdes, P. J., Francis, J. E., & Sellwood, B. W. 2002b. Global middle Pliocene biome reconstruction: A data/model synthesis. Geochemistry, Geophysics, Geosystems 3, 1072.Google Scholar
Haywood, A. M. & Valdes, P. J. 2004. Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters 218, 363–77.Google Scholar
Hicock, S. R., Barrett, P. J. & Holme, P. J. 2003. Fragment of an ancient outlet glacier system near the top of the Transantarctic Mountains. Geology 31, 821–24.Google Scholar
Hill, D. J., Haywood, A. M., Hindmarsh, R. C. A. & Valdes, P. J. 2007. Characterising ice sheets during the mid Pliocene: evidence from data and models. In Williams, M., Haywood, A. M., Gregory, J. & Schmidt, D. (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society Special Publications TMS002, 517–38. Bath, UK: The Geological Society Publishing House.Google Scholar
Hollin, J. T. 1962. On the glacial history of Antarctica. Journal of Glaciology 4, 173–95.Google Scholar
Huybrechts, P. 1993. Glaciological modelling of the Late Cenozoic East Antarctic ice sheet: stability or dynamism? Geografiska Annaler 75A, 221–38.Google Scholar
Jouzel, J., Raisbeck, G., Benoist, J. P., Yiou, F., Lorius, C., Raynaud, D., Petit, J. R., Barkov, N. I., Korotkevitch, Y. S. & Kotlyakov, V. M. 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago. Quaternary Research 31, 135–50.Google Scholar
Kellogg, D. E. & Kellogg, T. B. 1996. Diatoms in South Pole ice: implications for eolian contamination of Sirius Group deposits. Geology 24, 115–18.Google Scholar
Kennett, J. P. 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research 82, 3843–60.Google Scholar
Kennett, J. P. & Hodell, D. A. 1993. Evidence for the relative climatic stability of Antarctica during the early Pliocene: A marine perspective. Geografiska Annaler 75A, 205–20.Google Scholar
Kurz, M. D. & Ackert, R. P. 1997. Stability of the East Antarctic Ice Sheet? New chronological evidence from Bennett Platform, Antarctica. EOS Transactions. AGU Spring Meeting Supplement 78, S185.Google Scholar
Levy, R., Cody, R., Crampton, J., Fielding, F.Golledge, N., Harwood, D., Henrys, S., McKay, R., Naish, T., Ohneiser, C.Wilson, G., Wilson, T. & Winter, D. 2012. Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Global and Planetary Change 80–81, 6184.Google Scholar
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R. & Machlus, M. L. 2007. Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains. GSA Bulletin 119, 1449–61.Google Scholar
Lewis, A. R, Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S. R., Johnson, J. V., Leng, M. J., Machlus, M. L.Newton, A. E., Raine, J. I., Willenbring, J. K., Williams, M. & Wolfe, A. P. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences 105, 10676–80.Google Scholar
Lorius, C., Raynaud, D., Petit, J. R., Jouzel, J. & Merlivat, L, 1984. Late glacial maximum-Holocene atmospheric and ice thickness changes from Antarctic ice core studies. Annals of Glaciology 5, 8894.Google Scholar
Lythe, M. B., Vaughan, D. G. & BEDMAP Consortium. 2001. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research 106(B6) 11,335–51.Google Scholar
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D., DeConto, R., Fink, D., Zwartz, D., Gore, D. & Lavoie, C. 2011. Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience 4, 195202.Google Scholar
Marchant, D. R., Denton, G. H., Swisher, C. C. III & Potter, N. Jr. 1996. Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region of southern Victoria Land. GSA Bulletin 108, 181–94.Google Scholar
Marchant, D. R. & Denton, G. H. 1996. Miocene and Pliocene paleoclimate of the Dry Valleys region, Southern Victoria land: a geomorphological approach. Marine Micropaleontology 27, 253–71.Google Scholar
Marchant, D. R. & Head, J. W. III. 2007. Antarctic dry valley microclimate zones: Application to Mars. Icarus 192, 187222.Google Scholar
Margolis, S. V. & Kennett, J. P. 1971. Cenozoic paleoglacial history of Antarctica recorded in subantarctic deep sea cores. American Journal of Science 271, 136.Google Scholar
Mayewski, P. A. 1972. Glacial geology near McMurdo and comparison with the Central Transantarctic Mountains. Antarctic Journal of the United States 7, 103–06.Google Scholar
Mayewski, P. A. 1975. Glacial geology and Late Cenozoic history of the Transantarctic Mountains, Antarctica. Institute of Polar Studies Report 56. Columbus: The Ohio State University. 162 pp.Google Scholar
Mayewski, P. A. & Goldthwait, R. P. 1985. Glacial events in the Transantarctic Mountains: a record of the East Antarctic ice sheet. In Turner, M. D. & Splettstoesser, J. (eds) Geology of the central Transantarctic Mountains. AGU Antarctic Research Series 36(6), 275324. Washington, DC: American Geophysical Union.Google Scholar
McGinnis, L. D. (ed.) 1981. Dry Valley Drilling Project. AGU Antarctic Research Series 81. Washington, DC: American Geophysical Union.Google Scholar
McKay, R. M., Barrett, P. J., Harper, M. A. & Hannah, M. J. 2008. Atmospheric transport and concentration of diatoms in surficial and glacial sediments of the Allan Hills, Transantarctic Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 168–83.Google Scholar
McKelvey, B. C., Webb, P. N., Harwood, D. M. & Mabin, M. C. G. 1991. The Dominion Range Sirius Group: a record of the Late Pliocene–Early Pleistocene Beardmore Glacier. In Thompson, M. R. A., Crame, J. A. & Thompson, J. W. (eds) Geological Evolution of Antarctica, 675–82. Cambridge, UK: Cambridge University Press.Google Scholar
McKelvey, B., Hambrey, M., Harwood, D., Mabin, M., Webb, P. & Whitehead, J. 2001. The Pagodroma Group – The Neogene record in the northern Prince Charles Mountains of a dynamic Lambert Glacier and East Antarctic Ice Sheet, Antarctic Science 13, 455–68.Google Scholar
Mercer, J. H. 1968a. Glacial Geology of the Reedy Glacier Area, Antarctica. GSA Bulletin 79, 471–86.Google Scholar
Mercer, J. H. 1968b. The discontinuous glacio-eustatic fall in Tertiary sea level. Palaeogeography, Palaeoclimatology, Palaeoecology 5, 7785.Google Scholar
Mercer, J. H., 1972. Some observations on the glacial geology of the Beardmore Glacier area. In Adie, R. J. (ed.) Antarctic Geology and Geophysics, 427–33. Oslo: Universitetsforlarget.Google Scholar
Mercer, J. H. 1978. West Antarctic Ice Sheet and CO2 greenhouse effect: A threat of disaster. Nature 271, 321–25.Google Scholar
Mercer, J. H. 1986. Southern Chile: a modern analog of the southern shores of the Ross Embayment during Pliocene warm intervals. Antarctic Journal of the United States 21(5), 103–05.Google Scholar
Miller, K. G., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Rosenthal, Y., Cramer, B. S., Peltier, W. R., Sosdian, S. & Wright, J. D. 2012. The high tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40, 407–10.Google Scholar
Miller, S., Fitzgerald, P. & Baldwin, S. 2010. Cenozoic range-front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: Thermochronologic and geomorphologic constraints: Tectonics 29, TC1003.Google Scholar
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, G., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Laufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D.Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T. & Williams, T. 2009. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–28.Google Scholar
Ng, F., Hallet, B., Sletten, R. & Stone, J. 2005. Fast-growing till over ancient ice in Beacon Valley, Antarctica, Geology 33, 121–24.Google Scholar
Nichols, R. L. 1964. Present status of Antarctic glacial geology. In Adie, R. J. (ed.) Antarctic Geology, 123–27. Oslo: Universiteforslaget.Google Scholar
Nitsche, F. O., Jacobs, S. S., Larter, R. D. & Gohl, K. 2007. Bathymetry of the Amundsen Sea continental shelf: implications for geology, oceanography and glaciology. Geochemistry, Geophysics, Geosystems 8, Q10009.Google Scholar
Offer, Z. Y., Zaady, E. & Shachak, M. 1998. Aeolian particle input to the soil surface at the northern limit of the Negev desert. Arid Soil Research and Rehabilitation 12, 5562.Google Scholar
Parish, T. R. & Bromwich, D. H. 1987. The surface windfield over the Antarctic ice sheets. Nature 328, 5154.Google Scholar
Pickard, J., Adamson, D. A., Harwood, D. M., Miller, G. H., Quilty, P. G. & Dell, R. K. 1988. Early Pliocene marine sediments, coastline, and climate of East Antarctica. Geology 16, 168–61.Google Scholar
Pollard, D. & DeConto, R. M., 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–32.Google Scholar
Prentice, M. L., Denton, G. H., Lowell, T. V., Conway, H. C. & Heuser, L. E. 1986. Pre–late Quaternary glaciation of the Beardmore Glacier region, Antarctica. Antarctic Journal of the United States 21, 9598.Google Scholar
Prentice, M. L. & Matthews, R. K. 1991. Tertiary Ice Sheet Dynamics: The Snow Gun Hypothesis. Journal of Geophysical Research 96(B4), 6811–27.Google Scholar
Raymo, M. E., Mitrovica, J. X., O'Leary, M. J., DeConto, R. M. & Hearty, P. J. 2011. Departures from eustasy in Pliocene sea-level records. Nature Geoscience 4, 328–32.Google Scholar
Reading, A. M. 2002. Antarctic seismicity and neotectonics. In Gamble, J. A., Skinner, D. N. B. & Henrys, S. (eds) Antarctica at the close of a millennium. The Royal Society of New Zealand Bulletin 35, 479–84. Wellington: The Royal Society of New Zealand.Google Scholar
Retallack, G. J., Krull, E. S. & Bockheim, J. G. 2001. New grounds for reassessing palaeoclimate of the Sirius Group, Antarctica. Journal of the Geological Society, London 158, 925–35.Google Scholar
Rignot, E., Mouginot, J. & Scheuchl, B. 2011. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–30.Google Scholar
Robinson, K. S. 1997. Antarctica. London: Harper Collins. 414 pp.Google Scholar
Rutford, R. H., Craddock, C., White, C. M. & Armstrong, R. L. 1972. Tertiary glaciation in the Jones Mountains. In Adie, R. J. (ed.) Antarctic geology and geophysics, 239–43. Oslo: Universitetsforlaget.Google Scholar
Schiller, M., Dickinson, W. W., Ditchburn, R. G., Graham, I. J. & Zondervan, A. 2009. Atmospheric 10Be in an Antarctic soil: Implications for climate change. Journal of Geophysical Research 114, F01033.Google Scholar
Schneider, S. H. 1989. Global Warming: Are We Entering the Greenhouse Century? San Francisco: Sierra Club Books. 404 pp.Google Scholar
Schoof, C. 2007. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research 112, F03S28.Google Scholar
Schorghofer, N. 2005. A physical mechanism for long-term survival of ground ice in Beacon Valley, Antarctica. Geophysical Research Letters 32, L19503.Google Scholar
Shackleton, N. J. & Kennett, J. P. 1975. Late Cenozoic oxygen and carbon isotopic changes at DSDP Site 284: Implications for glacial history of the Northern Hemisphere and Antarctica. In Kennett, J. P., Houtz, R. E.et al. (eds) Initial reports of the Deep Sea Drilling Project 29, 801–07. Washington, DC: US Government Printing Office.Google Scholar
Shaw, G. E. 1988. Antarctic aerosols – a review. Reviews of Geophysics 26, 89112.Google Scholar
Shevenell, A., Kennett, J. P. & Lea, D. W. 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–70.Google Scholar
Stern, T. A., Baxter, A. K. & Barrett, P. J. 2005. Isostatic rebound due to glacial erosion within the Transantarctic Mountains. Geology 33, 221–24.Google Scholar
Stroeven, A. P. 1994. Semi-consolidated glacial deposits on Mount Fleming, South Victoria Land, Antarctica: A test of the late Neogene East Antarctic Ice Sheet collapse hypothesis. MSc Thesis. University of Maine, Orono. 183 pp.Google Scholar
Stroeven, A. P. 1996. Late Tertiary glaciations and climate dynamics in Antarctica: evidence from the Sirius Group, Mount Fleming, Dry Valleys. PhD Dissertation, Stockholm University. 85 pp.Google Scholar
Stroeven, A. P. 1997. The Sirius Group of Antarctica: age and environments. In Ricci, C. A. (ed.) The Antarctic Region: geological evolution and processes, 747–61. Siena, Italy: Museo Nazionale dell' Antartide.Google Scholar
Stroeven, A. P., Prentice, M. L. & Kleman, J. 1996. On marine microfossil transport and pathways in Antarctica during the late Neogene: Evidence from the Sirius Group at Mount Fleming. Geology 24, 727–30.Google Scholar
Stroeven, A. P., Burckle, L. H., Prentice, M. L. & Kleman, J. 1998. Atmospheric transport of diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze. GSA Today 8, 15.Google Scholar
Stroeven, A. P. & Kleman, J. 1999. Age of Sirius Group on Mount Feather, McMurdo Dry Valleys, Antarctica, based on glaciological inferences from the overridden mountain range of Scandinavia. Global and Planetary Change 23, 231–47.Google Scholar
Stroeven, A. P. & Prentice, M. 1997. A case for Sirius Group alpine glaciation at Mount Fleming, South Victoria Land, Antarctica: a case against Pliocene East Antarctic Ice Sheet reduction. GSA Bulletin 109, 825–40.Google Scholar
Sugden, D. E. 1992. Ice sheets at risk? Nature 355, 775–6.Google Scholar
Sugden, D. E. 1996. The East Antarctic Ice Sheet: Unstable Ice or Unstable Ideas? Transactions of the Institute of British Geographers, New Series 21, 443–54.Google Scholar
Sudgen, D. E., Marchant, D. R. & Denton, G. H. (eds) 1993. The case for a stable East Antarctic Ice Sheet. Geografiska Annaler 75A (), 151353.Google Scholar
Sugden, D. E., Denton, G. H. & Marchant, D. R. 1995a. Landscape evolution of the Dry Valleys, Transantarctic Mountains: Tectonic implications. Journal of Geophysical Research 100(B7), 9949–67.Google Scholar
Sugden, D. E., Marchant, D. R., Potter, N. Jr., Souchez, R. A., Denton, G. H., Swisher, C. C. & Tison, J.-L. 1995b. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–14.Google Scholar
Sugden, D. E., Summerfield, M. A., Denton, G. H., Wilch, T. I., McIntosh, W. C., Marchant, D. R. & Rutford, R. H. 1999. Landscape development in the Royal Society Range, southern Victoria Land, Antarctica: Stability since the middle Miocene. Geomorphology 28, 181200.Google Scholar
Sugden, D. E. & Denton, G. H. 2004. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis. GSA Bulletin 116, 840–57.Google Scholar
Summerfield, M. E., Sugden, D. E., Denton, G. H., Marchant, D. R., Cockburn, H. A. P. & Stuart, M. F. 1999. Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land, Antarctica. In Smith, B. J., Whalley, W. B. & Warke, P. A. (eds) Uplift, Erosion and Stability: Perspectives on Long-term Landscape Evolution. Geological Society, London, Special Publication 162, 255–67. Bath, UK: Geological Society Publishing House.Google Scholar
Taylor, G. 1922. The Physiography of McMurdo Sound and Granite Harbour Region. British Antarctic (Terra Nova) Expedition, 1910–13. London: Harrison and Sons. 246 pp.Google Scholar
Turekian, K. K. (ed.) 1971. The Late Cenozoic Glacial Ages. New Haven, Connecticut: Yale University Press.Google Scholar
Van der Wateren, F. M., Dunai, T. J., Van Balen, R. T., Klas, W., Verbers, A. L. L. M., Passchier, S. & Herpers, U. 1999. Contrasting Neogene denudation histories of regions in the Transantarctic Mountains, northern Victoria Land, Antarctica, constrained by cosmogenic nuclide measurements. Global and Planetary Change 23, 145–72.Google Scholar
Van der Wateren, F. M. & Verbers, A. L. L. M. 1993. Climate change, rifting and landscape evolution in the Ross Embayment. EOS 74, 490–91.Google Scholar
Webb, P.-N., Ronan, T. E., Lipps, J. H. & DeLaca, T. E. 1979. Miocene glaciomarine sediments from beneath the southern Ross Ice Shelf, Antarctica. Science 203, 435–37.Google Scholar
Webb, P.-N., Harwood, D. M., McKelvey, B. C., Mercer, J. H. & Stott, L. D. 1984. Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology 12, 287–91.Google Scholar
Webb, P.-N., McKelvey, B. C., Harwood, D. M., Mabin, M. C. G. & Mercer, J. H. 1986. Late Cenozoic tectonic and glacial history of the Transantarctic Mountains. Antarctic Journal of the United States 21, 99100.Google Scholar
Webb, P.-N. & Harwood, D. M, 1987. Terrestrial flora of the Sirius Formation: its significance for Late Cenozoic glacial history. Antarctic Journal of the United States 22, 711.Google Scholar
Webb, P.-N. & Harwood, D. M. 1991. Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quaternary Science Reviews 10, 215–23.Google Scholar
Webb, P.-N. & Wrenn, J. H. 1982. Upper Cenozoic micropalaeontology and biostratigraphy of eastern Taylor Valley, Antarctica. In Craddock, C. (ed.) Antarctic Geoscience, 1117–22. Madison: University of Wisconsin Press.Google Scholar
Whitehead, J. M., Quilty, P., Harwood, D. M. & McMinn, A. 2001, Early Pliocene palaeoenvironment of the Sørsdal Formation, Vestfold Hills, based on diatom data. Marine Micropaleontology 41, 125–52.Google Scholar
Wilch, T. I., Denton, G. H., Lux, D. R. & McIntosh, W. C. 1993a. Limited Pliocene glacier extent and surface uplift in middle Taylor Valley, Antarctica. Geografiska Annaler 75A, 331–51.Google Scholar
Wilch, T. I., Lux, D. R., Denton, G. H. & McIntosh, W. C. 1993b. Minimal Pliocene–Pleistocene uplift of the dry valleys sector of the Transantarctic Mountains; a key parameter in ice-sheet reconstructions. Geology 21, 841–44.Google Scholar
Wilson, G. S. 1995. The Neogene Antarctic ice sheet: A dynamic or stable feature? Quaternary Science Reviews 14, 101–23.Google Scholar
Wilson, G. S., Harwood, D. M., Askin, R. A. & Levy, R. H. 1998. Late Neogene Sirius Group strata in Reedy Valley, Antarctica: A multiple-resolution record of climate, ice sheet and sea-level events. Journal of Glaciology 44, 437–47.Google Scholar
Wilson, G. S., Barron, J. A., Ashworth, A. C., Askin, R. A., Carter, J. A., Curren, M. G., Dalhuisen, D. H., Friedmann, E. I., Fyodorov-Davidov, D. G., Gilichinsky, D. A. & Harper, M. A. 2002. The Mount Feather diamicton of the Sirius Group: An accumulation of indicators of Neogene Antarctic glacial and climatic history. Palaeogeography, Palaeoclimatology, Palaeoecology 182, 117–31.Google Scholar
Wise, S. W. Jr., Breza, J. R., Harwood, D. M. & Wei, W. 1991. Paleogene glacial history of Antarctica. In McKenzie, J. A., Muller, D. W. & Weissert, H. (eds) Controversies in Modern Geology, 133–71. Cambridge, UK: Cambridge University Press.Google Scholar
Wright, C. S. & Priestley, R. E. 1922. British (Terra Nova) Antarctic Expedition, Glaciology. London: Harrison and Sons. 518 pp.Google Scholar