Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T12:09:53.720Z Has data issue: false hasContentIssue false

A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System

Published online by Cambridge University Press:  03 November 2011

Carlos Villaseca
Affiliation:
Carlos Villaseca and Víctor Herreros, Dpt. Petrología y Geoquímica, Fac. CC. Geológicas, Universidad Complutense, 28040 Madrid, Spain; e-mail: granito@eucmax.sim.ucm.es
Víctor Herreros
Affiliation:
Carlos Villaseca and Víctor Herreros, Dpt. Petrología y Geoquímica, Fac. CC. Geológicas, Universidad Complutense, 28040 Madrid, Spain; e-mail: granito@eucmax.sim.ucm.es

Abstract

A batholith of around 10,000 km2 was formed during the Hercynian orogeny in the Spanish Central System (SCS). Geochronological data indicate concentrated magmatic activity during the period 325-284 Ma. This late-orogenic magmatism is essentially granitic with only minor associated basic rocks (< 2% in outcrop). The SCS is a remarkably homogeneous batholith showing a restricted range of geochemical granite types without any evolutionary pattern related to time. These peraluminous granites show a limited variation in Na2O/K2O) (0·60-0·95), K/Rb (140-240), (La/Yb)n (6-13), and Eu/Eu* (0·34-0·62) ratios. This constancy in chemical characteristics is also reflected in their isotopic signatures: most monzogranites have initial 87Sr/86Sr ratios in the range of 0·7073-0·71229, initial εNd values vary between —5·4 and —6·6 and δ 18O values group in the restricted range of 8·9-9·6‰. The lack of significant differences among SCS granitoids, maintained during a long geological period, suggests constancy in the nature of their source regions and conditions of magma generation. (1) Limited range of crustal sources: an essentially magmatic recycling during Hercynian orogen is suggested. Mantle-derived components are very limited and restricted to a minor role in the origin of the batholith. Geochemical and isotopic features of SCS granitoids are compatible with felsic lower crustal sources. (2) Constraints in melt conditions: uniformity in residual mineral assemblages (feldspars and garnet are always present in the granulitic residua) combined with a lack of attainment of equilibrium conditions during accessory phase dissolution in the crustal melting process is suggested. Granitic melts never reach saturation in some trace elements (REE, Th, Y, Zr), restricting their chemical variability. (3) Homogenisation in magma chambers: long-lived magmatic systems whose successive pulses accumulate into large magma chambers have the opportunity to mingle, thus reducing source differences.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atherton, M. P., McCourt, L. M., Sanderson, L. M.& Taylor, W. P. 1979. The geochemical character of the segmented Peruvian Coastal Batholith and associated volcanics. In Atherton, M. P.& Tarney, J. (eds) Origin of granite batholiths: geochemical evidence 4564. Orpington, Kent: Shiva Publishing.Google Scholar
Ayres, M.& Harris, N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chemical Geology 139, 249–69.Google Scholar
Banda, E., Suriñachs, E., Aparicio, A., Sterra, J.& Ruiz de la Parte, E. 1981. Crust and upper mantle structure of the Central Iberian Meseta (Spain). Geophysical Journal of the Royal Astronomical Society 67, 779–89.Google Scholar
Barbero, L. 1995. Granulite facies metamorphism in the Anatectic Complex of Toledo (Spain): Late Hercynian tectonic evolution by crustal extension. Journal of the Geological Society of London 152, 365–82.Google Scholar
Barbero, L.& Rogers, G. 1999. Implications of U-Pb monazite ages from syn-orogenic granites of the anatectic complex of Toledo (Spain) in the evolution of the central part of the Hercynian Iberian Belt. In Barbarin, B. (ed). The Origin of Granites and Related Rocks, Fourth Hutton Symposium Abstracts. Documents du B.R.G.M. 290, 203.Google Scholar
Barbero, L.& Villaseca, C. 1992. The Layos granite, hercynian Complex of Toledo (Spain): an example of parauthocthonous restiterich granite in a granulitic area. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 127–38.Google Scholar
Bea, F. 1985. Los granitoides hercínicos de la mitad occidental del batolito de Avila (sector de Gredos). Aproximación mediante el concepto de superfacies. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 79, 549–72.Google Scholar
Bea, F. 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology 37, 521–52.Google Scholar
Bea, F., Pereira, M.D., Corretgé, L. G.& Fershtater, G. B. 1994. Differentiation of strongly peraluminous, perphosphorus granites: The Pedrobernardo pluton, central Spain, Geochimica et Cosmochimica Acta 58, 2609–27.Google Scholar
Bea, F., Montero, P.& Molina, J. F. 1999. Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila Batholith: A model for the generation of Variscan batholiths in Iberia. Journal of Geology 107, 399419.Google Scholar
Bea, E.& Montero, P. 1999. Behaviour of accessory phases and the redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta 63, 1133–53.Google Scholar
Bellido, F. 1979. Estudio petrológico y geoquímico del plutón de La Cabrera (Ph.d. Thesis, Universidad Complutense de Madrid).Google Scholar
Brandebourger, E. 1984. Les granitoides hercyniens tardifs de la Sierra de Guadarrama (Systeme Central Espagne). Pétrographie et geochimie (Ph.D. Thesis, Université de Lorraine).Google Scholar
Casillas, R. 1989. Las asociaciones plutonicas tardihercinicas del sector occidental de la Sierra de Guadarrama, Sistema Central Espanol, (Las Navas del Marques—San Martin de Valdeiglesias). Petrologia geoquimica, genesis y evolucion (Ph.D. Thesis, Universidad Complutense de Madrid).Google Scholar
Casillas, R., Vialette, Y., Peinado, M., Duthou, J. L.& Pin, C. 1991. Ages et caracteristiques isotopiques (Sr—Nd) des granitoides de la Sierra de Guadarrama occidental (Espagne). Abstract Séance spécialisée de la Société Géologique de la France a la mémoire de Jean Lameyre.Google Scholar
Castro, A., Patiño Douce, A. E., Corretgé, L. G., de, la Rosa J. D., El-Biad, M.& El-Hmidi, H. 1999. Origin of peraluminous granites and granodiorites, Iberian Massif, Spain: an experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology 135, 255–76.Google Scholar
Chappell, B. W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46, 535–51.Google Scholar
Chappell, B. W., White, A. J. R.& Williams, I. S. 1991. A transverse section through granites of the Lachlan Fold Belt. Second Hutton Symposium Excursion Guide. Record 1991/22 BMR, Canberra.Google Scholar
Debon, F.& Le Fort, P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73, 135–49.Google Scholar
Deniel, C., Vidal, P., Fernandez, A., Le Fort, P.& Peucat, J. J. 1987. Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology 96, 7892.Google Scholar
Di Vincenzo, G., Andriessen, P. A. M.& Ghezzo, C. 1996. Evidence of two different components in a Hereynian peraluminous cordierite-bearing granite: the San Basilio intrusion (Central Sardinia, Italy). Journal of Petrology 37, 1, 175206.Google Scholar
Downes, H., Shaw, A., Williamson, B. J.& Thirlwall, M. F. 1997. Sr, Nd and Pb isotopic evidence for the lower crustal origin of Hercynian granodiorites and monzogranites, Massif Central, France. Chemical Geology 136, 99122.Google Scholar
Escuder Viruete, J., Hernáiz Huerta, P. P., Valverde-Vaquero, P., Rodríguez Fernández, R.& Dunning, G. 1998. Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics 290, 87109.Google Scholar
Eugercios, L. 1994. Petrología y geocronología Rb—Sr de plutones del sector central de la Sierra de Guadarrama (macizos de Alpedrete y de la Atalaya Real) (Tesis Licenciatura, Universidad Complutense de Madrid).Google Scholar
Fraser, G., Ellis, D.& Eggins, S. 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25, 607–10.Google Scholar
Gardien, V., Thompson, A. B., Grujic, D.& Ulmer, P. 1995. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. Journal of Geophysical Research 100, 15, 581–91.Google Scholar
Gerdes, A., Wörner, G.& Henk, A. 1998. Thermal and geochemical evidence for granite generation and HT-LP metamorphism by crustal stacking and radiogenic heating (the Variscan southern Bohemian massif). Acta Universitatis Carolinae-Geologica 42, 254.Google Scholar
Gromet, L. P.& Silver, L. T. 1987. REE variations across the Peninsular Ranges batholith: Implications for batholithic petrogenesis and crustal growth in magmatic ares. Journal of Petrology 28, 75125.Google Scholar
Gutiérrez Marco, J. C., San José, M. A.& Pieren, A. P. 1990. Central-Iberian Zone. Post-Cambrian Paleozoic stratigraphy. In Dallmeyer, R. D.& Martínez García, E. (eds) Pre-Mesozoic Geology of Iberia 160–71. Berlin: Springer.Google Scholar
Hernando, S., Schott, J. J., Thuizart, R.& Montigny, R. 1980. Age des andésites et de sédiments intcrstratifiés de la région d'Atienza (Espagne): étude stratigraphique, géochronologique et palèomagnetique. Sciences Géologiques, Strasbourg, Bulletin 33, 119–28.Google Scholar
Herreros, V. 1998. Petrología y geoquímica de los granitoides del sector oriental de Gredos (Sistema Central Español) (Ph.D. Thesis, Universidad Complutense de Madrid).Google Scholar
Hess, P. C. 1989. Origins of igneous rocks. Cambridge, MA: Harvard University Press.Google Scholar
Huppert, H.E.& Sparks, R. S. J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29, 599624.Google Scholar
Isihara, S.& Matsuhisa, Y. 1999. Oxygen isotopic constraints on the geneses of the Miocene Outer Zone granitoids in Japan. Lithos 46, 523–34.Google Scholar
Johannes, W. 1984. Beginning of melting in the granite system Ab-An-Or-An-H2O. Contributions to Mineralogy and Petrology 84, 264–73.Google Scholar
Krogstad, E. J.& Walker, R. J. 1996. Evidence of heterogeneous crustal sources: the Harney Peak granite, south Dakota, U.S.A. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 331–7.Google Scholar
Marsh, B. D. 1996. Solidification fronts and magmatic evolution. Mineralogical Magazine 60, 540.Google Scholar
Martín Romera, C, Villaseca, C.& Barbero, L. 1999. Materials anatécticos en el área de Sotosalbos (Segovia, Sierra de Guadarrama). Caracterización petrológica, geoquímica e isotópica (Sr, Nd). II Congreso Ibérico de Geoquímica, Lisboa (Portugal), 329–32.Google Scholar
Montel, J. M. 1993. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology 110, 127–46.Google Scholar
Moreno-Ventas, I., Rogers, G.& Castro, A., 1995. The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr-Nd isotopes. Contributions to Mineralogy and Petrology 120, 137–49.Google Scholar
Nabelek, P. I.& Glascock, M. D. 1995. REE-depleted leucogranites, Black Hills, south Dakota: a consequence of disequilibrium melting of monazite-bearing schists. Journal of Petrology 36, 1,05571.Google Scholar
Norman, M. C., Leeman, W. P.& Mertzman, S. A. 1992. Granites and rhyolites from the northwestern U.S.A.: temporal variation in magmatic processes and relations to tectonic setting. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 7181.Google Scholar
Patiño Douce, A. E., Humphreys, D. E.& Johnston, A. D. 1990. Anatexis and metamorphism in tectonically thickened crust exemplified by the Sevier Hinterland, Western North America. Earth and Planetary Science Letters 97, 290315.Google Scholar
Pereira, M. D. 1992. El complejo Anatéctico de la Peña Negra (Batolito de Avila): un estudio de la anatcxia cortical en condiciones de baja presión (Ph.D. Thesis, Universidad de Salamanca).Google Scholar
Pérez-Soba, C. 1991. Petrología y geoquímica del macizo granítico de La Pedriza (Ph.D. Thesis, Universidad Complutense de Madrid).Google Scholar
Petford, N.& Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 491521.Google Scholar
Pin, C.& Duthou, J. L. 1990. Sources of Hercynian granitoids from the French Massif Central: inferences from Nd-isotopes and consequences for crustal evolution. Chemical Geology 83, 281–96.Google Scholar
Pinarelli, L.& Rottura, A., 1995. Sr and Nd isotopic study and Rb-Sr geochronology of the Béjar granites, Iberian Massif, Spain. European Journal of Mineralogy 7, 577–89.Google Scholar
Pressley, R. A.& Brown, M. 1999. The Phillips pluton, Maine, USA: evidence of heterogenous crustal sources and implications for granite ascent and emplacement mechanisms in convergent orogens. Lithos 46, 335–66.Google Scholar
Recio, C., Fallick, A. E.& Ugidos, J. M. 1992. A stable isotopic (δ18O, δD) study of the late-Hercynian granites and their host-rocks in the Central Iberian Massif (Spain). Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 247–57.Google Scholar
Reid, M. R. 1990. Ion probe investigation of rare earth element distribution and partial melting of metasedimentary granulites. In Vielzcuf, D.& Vidal, Ph. (eds) Granulites and crustal evolution, 507–22. Dordrecht: Kluwer.Google Scholar
Rottura, A., Bargossi, G. M., Caironi, V., D'Amico, C.& Maccarone, E. 1989. Petrology and geochemistry of late-hercynian granites from the Western Central System of the Iberian Massif. European Journal of Mineralogy 1, 667–83.Google Scholar
Sawyer, E. W. 1991. Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. Journal of Petrology 32, 701–38.Google Scholar
Searle, M. P., Parrish, R. R., Hodges, K. V., Hurford, A., Ayres, M. W.& Whitehouse, M. J. 1997. Shisha Pangma leucogranite, South Tibetan Himalaya: field relations, geochemistry, age, origin, and emplacement. Journal of Geology 105, 295317.Google Scholar
Siebel, W., Höhndorf, A.& Wendt, I. 1995. Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematies. Chemical Geology 125, 249–70.Google Scholar
Spear, F. S., Kohn, M. J.& Cheney, J. T. 1999. P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology 134, 1732.Google Scholar
Speer, J. A., McSween, H. Y. Jr.& Gates, A. E. 1994. Generation, segregation, ascent, and emplacement of Alleghanian plutons in the southern Appalachians. Journal of Geology 102, 249–67.Google Scholar
Taylor, H. P. Jr. 1988. Oxygen, hydrogen, and strontium isotope constraints on the origin of granites. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 317–38.Google Scholar
Thompson, A. B.& Connolly, J. A. D. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research 100, B8, 15, 565–79.Google Scholar
Ugidos, J.M.& Recio, C. 1993. Origin of cordierite-bearing granites by assimilation in the Central Iberian Massif (CIM), Spain. Chemical Geology 103, 2743.Google Scholar
Ugidos, J. M., Valladares, M. I., Recio, C., Rogers, G., Fallick, A. E.& Stephens, W. E. 1997. Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chemical Geology 136, 5570.Google Scholar
Villaseca, C., Barbero, L., Huertas, M. J., Andonaegui, P.& Bellido, F. 1993. A cross-section through Hercynian granites of Central Iberian Zone. Excursion guide, C.S.I.C. Madrid.Google Scholar
Villaseca, C., Eugereios, L., Snelling, N. J., Huertas, M. J.& Castellón, T. 1995. Nuevos datos geocronológicos (Rb—Sr, K—Ar) de granitoides hereínicos de la Sierra de Guadarrama. Revista Sociedad Geológica de España 8, 129–40.Google Scholar
Villaseca, C., Barbero, L.& Rogers, G. 1998a. Crustal origin of Hercynian peraluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) arguments. Lithos 43, 5579.Google Scholar
Villaseca, C., Barbero, L., Reyes, J.& Santos Zalduegui, J. F. 1998b. Nuevos datos petrológicos, gcocronología (Rb-Sr) y geoquímica isotópica (Sr, Nd) del plutón de Ventosilla (Sierra de Guadarrama, Sistema Central Espanol). Geogaceta 23, 169–72.Google Scholar
Villaseca, C., Barbero, L.& Herreros, V. 1998c. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh: Earth Sciences 89, 113–19.Google Scholar
Villaseca, C., Barbero, L., Rogers, G., Reyes, J.& Santos Zalduegui, J.F. 1998d. Nd isotopic heterogeneity in late-Hercynian granitic plutons from Central Spain. Geogaceta 23, 165–68.Google Scholar
Villaseca, C., Downes, H., Pin, C.& Barbero, L. 1999. Nature and composition of the lower continental crust in central Spain and the granulite-granite linkage: inferences from granulitic xenoliths. Journal of Petrology 40, 1, 465–96.Google Scholar
Villaseca, C.& Barbero, L. 1994. Estimación de las condiciones del metamorfismo hercínico de alta presión de la Sierra de Guadarrama. Geogaceta 16, 2730.Google Scholar
Watson, E. B. 1985. Henry's law behaviour in simple systems and in magmas: Criteria for discerning concentration-dependent partition coefficients in nature. Geochimica et Cosmochimica Acta 49, 917–23.Google Scholar
Watson, E. B.& Harrison, T. M. 1983. Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.Google Scholar
Watt, G. R.& Harley, S. L. 1993. Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contributions to Mineralogy and Petrology 114, 550–66.Google Scholar
Wildberg, H. G. H., Bischoff, L.& Baumann, A. 1989. U-Pb ages of zircons from meta-igneous and metasedimentary rocks of the Sierra de Guadarrama: implications for the Central Iberian crustal evolution. Contributions to Mineralogy and Petrology 103, 253–62.Google Scholar