Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T13:15:44.777Z Has data issue: false hasContentIssue false

Systematics and description of the lungfish genus Sagenodus from the Carboniferous of the UK

Published online by Cambridge University Press:  21 January 2020

Esther L. BEEBY
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. Email: jac18@cam.ac.uk 25 Jays Mead, Wotton-under-Edge, Gloucestershire, GL12 7JF, UK.
Timothy R. SMITHSON
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. Email: jac18@cam.ac.uk
Jennifer A. CLACK*
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. Email: jac18@cam.ac.uk
*
*Corresponding author

Abstract

The Carboniferous lungfish genus Sagenodus is reviewed from all available British specimens and described in detail for the first time. We identify two species exclusive to the UK: Sagenodusinaequalis, the type species, deriving from the late Carboniferous (=Pennsylvanian); and Sagenodus quinquecostatus derived from the early Carboniferous (=Mississippian). The genus is probably the most widespread of the known Carboniferous lungfish genera, but the British species have not been formally described since their discovery in the mid–late 19th Century. This work will provide data to help resolve existing questions about the position of Sagenodus in the phylogeny of Palaeozoic lungfishes, and provide a template for the recognition of isolated elements in museum collections and the finds from recent and future field work. The early Carboniferous species, S. quinquecostatus, shows a so far unique functional mechanism in which the lower tooth plates appear to rotate relative to the upper plates during jaw closure, implying a kinetic function at the symphysis or jaw joint.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Ahlberg, P. E. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the porolepiformes. Zoological Journal of the Linnean Society 103, 241287.Google Scholar
Andrews, S. M. & Carroll, R. L. 1991. The Order Adelospondyli: Carboniferous lepospondyl amphibians. Transactions of the Royal Society of Edinburgh: Earth Sciences 82, 239275.Google Scholar
Atthey, T. 1868. Notes on the various species of Ctenodus obtained from the shales of the Northumberland coal field. Annals and Magazine of Natural History 4th Series 1, 7787.Google Scholar
Barkas, T. P. 1869. Notes on some curious dentition of Coal-Measure fishes. Scientific Opinion 2, 479480.Google Scholar
Barkas, T. P. 1870. Ctenodus obtusus (n. sp). English Mechanics and World Science 12, 160.Google Scholar
Barkas, T. P. 1873a. Illustrated guide to the fish, amphibian, reptilian, and supposed mammalian remains of the Northumberland Carboniferous strata. London: W. M. Hutchings. 117 pp.Google Scholar
Barkas, T. P. 1873b. Remains of Ctenodus. English Mechanics and World Science 18, 68.Google Scholar
Barkas, W. J. 1874. On the microscopical structure of fossil teeth from the Northumberland true coal measures. Monthly Review of Dental Surgery 2, 533539.Google Scholar
Barkas, W. J. 1877. On the genus Ctenodus. Journal of the Proceedings of the Royal Society of New South Wales 10, 99110.Google Scholar
Bemis, W. E. 1984. Paedomorphosis and the evolution of the Dipnoi. Paleobiology 10, 293307.Google Scholar
Berman, D. S. 1976. Occurrence of Gnathorhiza (osteichthyes: Dipnoi) in aestivation burrows in the lower Permian of New Mexico with description of a new species. Journal of Paleonotology 50, 10341039.Google Scholar
Carpenter, K. K., Falcon-Lang, H. J., Benton, M. J. & Henderson, E. 2014. Carboniferous (Tournaisian) fish assemblages from the Isle of Bute, Scotland: systematics and palaeoecology. Palaeontology 57, 12151240.Google Scholar
Challands, T. J., Smithson, T. R., Clack, J. A., Bennett, C. E., Marshall, J. E. A., Wallace-Johnson, S. M. & ill, H. 2019. Lungfish survivor of the end-Devonian extinction and an early Carboniferous dipnoan radiation. Journal of Systematic Palaeontology 17, 18251846. doi: 10.1080/14772019.2019.1572234.Google Scholar
Chorn, J. & Schultze, H. P. 1989. A complete specimen of Sagenodus (Dipnoi) from the Upper Pennsylvanian of the Hamilton Quarry, Kansas. In Mapes, G. & Mapes, R. H. (eds) Regional geology and palaeontology of Upper Paleozoic Hamilton quarry area in southeastern Kansas. Kansas Geological Survey Guidebook, Series 6.Google Scholar
Clack, J. A., Challands, T. J., Smithson, T. R. & Smithson, K. Z. 2018. Newly recognized Famennian lungfishes from east Greenland reveal tooth plate diversity and blur the Devonian-Carboniferous boundary. Papers in Palaeontology 5, 261275.Google Scholar
Clack, J. A., Bennett, C. E., Davies, S. J., Scott, A. C., Sherwin, J. & Smithson, T. R. 2019. A Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and its environmental and sedimentological context. PeerJ 1, article 1. doi: 10.7717/peerj.5972.Google Scholar
Cloutier, R. 1996. Dipnoi (Akinetia: Sarcopterygii). In Schultze, H.-P. & Cloutier, R. (eds) Devonian fishes and plants of Miguasha, Quebec, Canada, 198226. München: Verlag Dr Friedrich Pfeil.Google Scholar
Coates, M. I., Tietjen, K., Olsen, A. M. & Finarelli, J. A. 2019. High-performance suction feeding in an early elasmobranch. Science Advances 5, eaax2742.Google Scholar
Cope, E. D. 1874. Description of a species of Ctenodus. Proceedings of the Academy of Natural Sciences of Philadelphia 1874, 9192.Google Scholar
Forster-Cooper, C. 1937. The Middle Devonian fish fauna of Achanarras. Transactions of the Royal Society of Edinburgh-Earth Sciences 59, 223239.Google Scholar
Frič, A. 1874. Ueber die entdeckung eines lurchfisches: Ceratodus barrandei in der Gaskohle des Rakonitzer Beckens. Sitzungsberichte der Königl. Böhmischen Gesellschaft der Wissenschaften (in Prag) 1874, 193195.Google Scholar
Fritsch, A. 1879. Fauna der Gaskohle und der Kalksteine der Permformation Bohems. Band 1. Prague: Selbstverlag. pp. 192.Google Scholar
Fritsch, A. 1885–1889. Fauna der Gaskohle und der Kalksteine der Permformation Bohems, 2. Stegocephali (Schluß), Dipnoi, Selachii (Angfang). Prague: Selbstverlag. pp. 1114.Google Scholar
Gosline, W. A. 1987. Jaw structures and movements in higher teleostean fishes. Japanese Journal of Ichthyology 34, 2132.Google Scholar
Hancock, A. & Atthey, T. 1868. Notes on the remains of some reptiles and fishes from the shales of the Northumberland coal field. Transactions of the Natural History Society of Northumberland and Durham 3, 66120.Google Scholar
Hancock, A. & Atthey, T. 1872. A few remarks on Dipterus and Ctenodus, and on their relationship to Ceratodus forsteri, Krefft. Transactions of the Natural History Society of Northumberland and Durham 4, 397407.Google Scholar
Henrichsen, I. G. C. 1972. A catalogue of fossil vertebrates in the Royal Scottish Museum, Edinburgh. Geology 3, 126.Google Scholar
Hussakof, L. 1911. The Permian fishes of North America. Carnegie Institution of Washington Publications 146, 155175.Google Scholar
Huttenlocker, A. K., Henrici, A., Nelson, W. J., Elrick, S., Berman, D. S., Schlotterbeck, T. & Sumida, S. S. 2018. A multitaxic bone bed near the Carboniferous Permian boundary (Halgaito Formation, Cutler Group) in Valley of the Gods, Utah, USA: vertebrate paleontology and taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 499, 7292.Google Scholar
Huxley, T. H. 1880. On the applications of the laws of evolution to the arrangement of the Vertebrata and more particularly of the Mammalia. Proceedings of the Zoological Society of London 1880, 649662.Google Scholar
Jaekel, O. 1911. Die wirbeltiere. Berlin: Börntrager. 252 pp.Google Scholar
Jarvik, E. 1967. On the structure of the lower jaw in dipnoans: with a description of an early Devonian dipnoan from Canada Melangnathus canadensis gen. et sp. nov. Journal of the Linnean Society (London) 47, 155183.Google Scholar
Jarvik, E. 1980. Basic structure and evolution of the vertebrates. Volume 1. London, New York, Toronto, Sydney, San Francisco: Academic Press. 575 pp.Google Scholar
Kemp, A. 1977. The pattern of tooth plate formation in the Australian lungfish Neoceratodus forsteri Kreft. Zoological Journal of the Linnean Society 60, 223258.Google Scholar
Kemp, A., Cavin, L. & Guinot, G. 2017. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology 471, 209219.Google Scholar
Lloyd, G. T., Wang, S. C. & Brusatte, S. L. 2011. Identifying heterogeneity in rates of morphological evolution, discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330348.Google Scholar
Lund, R. 1970. Fossil fishes from southwestern Pennsylvania. Part I, fishes from the Duquesne Limestone (Conenmaugh, Pennsylvanian). Annals of Carnegie Museum 41, 231261.Google Scholar
Marshall, C. R. 1988. A large, well preserved specimen on the Middle Pennsylvanian lungfish Conchopoma edesi (osteichthyes: Dipnoi) from Mazon Creek, Illinois, USA. Journal of Vertebrate Paleontology 8, 383394.Google Scholar
McCahon, T. J. & Miller, K. B. 2015. Environmental significance of lungfish burrows (Gnathorhiza) within lower Permian (Wolfcampian) paleosols of the US midcontinent. Palaeogeography, Palaeoclimatology, Palaeoecology 425, 112.Google Scholar
Miall, L. C. 1880. On some bones of Ctenodus. Proceedings of the Yorkshire Philosophical Society 7, 289299.Google Scholar
Miles, R. S. 1977. Dipnoan (Lungfish) skulls and relationships of the group – a study based on new species from the Devonian of Australia. Zoological Journal of the Linnean Society 61, 1328.Google Scholar
Müller, J. 1845. Über den Bau und die Grenzen der Ganoiden, and über das natürliche System der Fische. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1844, 117216.Google Scholar
Newberry, J. S. 1875. Descriptions of fossil fishes. Report of the Geological Survey of Ohio 2, 164.Google Scholar
Owen, R. 1867. On the dental characters of genera and species, chiefly of the fishes from the lower main seam and shales of coal, Northumberland. Transactions of the Odontological Society of Great Britain 5, 323375.Google Scholar
Panchen, A. L. 1970. In Kuhn, O. (ed.) Handbuch der Paläoherpetologie, part 5a (Anthracosauria). Stuttgart: Gustave Fischer Verlag.Google Scholar
Pardo, J. D., Huttenlocker, A. K. & Small, B. J. 2014. An exceptionally preserved transitional lungfish from the Lower Permian of Nebraska, USA, and the origin of modern lungfishes. PLoS ONE 9. e108542. doi:10.1371/journal.pone.0108542.Google Scholar
Romer, A. S. 1945. The Late Carboniferous vertebrate fauna of Kounova (Bohemia) compared with that of the Texas Redbeds. American Journal of Science 243, 417442.Google Scholar
Romer, A. S. 1955. Herpetichthyes, Amphibioidei, Choanichthyes or Sarcopterygii? Nature 176, 126.Google Scholar
Rosen, D. E., Forey, P. L., Gardiner, B. G. & Paterson, C. 1981. Lungfishes, tetrapods, paleontology, and plesiomorphy. Bulletin of the American Museum of Natural History 167, 159276.Google Scholar
Schultze, H.-P. 1975. Die Lungenfisch-Gattung Conchopoma (pisces, Dipnoi). Senkenbergiana lethaea 56, 191231.Google Scholar
Schultze, H.-P. 1981. Das Schädeldach eines ceratodontident Lungenfisches aus der Trias Süddeutschlands (Dipnoi, Pisces). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 70, 131.Google Scholar
Schultze, H-P. 1992. Fossilium catalogus, Dipnoi. Amsterdam: Kugler Publications. 464 pp.Google Scholar
Schultze, H-P. 1994. Palaeophichthys parvulus Eastman, 1908, a gnathorhizid dipnoan from the Middle Pennsylvanian of Illinois, USA. Annals of the Carnegie Museum 63, 105113.Google Scholar
Schultze, H.-P. & Campbell, K. S. W. 1986. Characterization of the Dipnoi, a monophyletic group. Journal of Morphology Supp. 1, 2537.Google Scholar
Schultze, H.-P. & Chorn, J. 1997. The Permo-Carboniferous genus Sagenodus and the beginning of modern lungfish. Contributions to Zoology 67, 970.Google Scholar
Sharp, E. L. & Clack, J. A. 2012. Redescription of the lungfish Straitonia waterstoni from the Viséan of Lothian, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102, 179189.Google Scholar
Sharp, E. L. & Clack, J. A. 2013. A review of the Carboniferous lungfish genus Ctenodus Agassiz, 1838 from the United Kingdom, with new data from an articulated specimen of Ctenodus interruptus Barkas, 1869. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104, 169204.Google Scholar
Small, B., Pardo, J. & Huttenlocker, A. K. 2006. Taxonomic diversity of estivating species in the lowest Permian of North America: onset of seasonality and comments on physiological plasticity. Journal of Vertebrate Paleontology 26(Suppl. to part 3), 126A.Google Scholar
Smith, M. M., Smithson, T. R. & Campbell, K. S. W. 1987. The relationships of Uronemus: a Carboniferous dipnoan with highly modified tooth plates. Philosophical Transactions of the Royal Society, London B 317, 299327.Google Scholar
Smithson, T. R. 1985. Scottish Carboniferous amphibian localities. Scottish Journal of Geology 21, 123142.Google Scholar
Smithson, T. R., Richards, K. R. & Clack, J. A. 2015. Lungfish diversity in Romer's Gap: reaction to the end-Devonian extinction. Palaeontology 59, 2944.Google Scholar
Smithson, T. R., Challands, T. J. & Smithson, K. Z. 2019. Traquair's lungfish from Loanhead: dipnoan diversity and tooth plate growth in the late Mississippian. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109, 4959.Google Scholar
Traquair, R. H. 1878. On the genera Dipterus, Palaedaphus, Holodus and Cheirodus. Annals and Magazine of Natural History 5, 117.Google Scholar
Traquair, R. H. 1881. Notice of new fish remains from the Blackband Ironstone of Borough Lee, near Edinburgh. Geological Magazine 8, 3437.Google Scholar
Traquair, R. H. 1883. Notice of new fish remains from the Blackband Ironstone of Borough Lee, near Edinburgh. No. IV. Geological Magazine 10, 542544.Google Scholar
Traquair, R. H. 1890. List of the fossil Dipnoi and Ganoidei of Fife and the Lothians. Proceedings of the Royal Society of Edinburgh 17, 385400.Google Scholar
Traquair, R. H. 1903. On the distribution of fossil fish-remains in the Carboniferous rocks of the Edinburgh district. Transactions of the Royal Society of Edinburgh 40, 687707.Google Scholar
Watson, D. M. S. & Gill, E. L. 1923. The structure of certain Palaeozoic Dipnoi. Journal of the Linnean Society of London, Zoology 35, 163216.Google Scholar
Westoll, T. S. 1949. On the evolution of the Dipnoi. In Jepsen, G. L., Mayr, E. & Simpson, G. G. (eds) Genetics, paleontology, and evolution, 121184. Princeton: Princeton University Press.Google Scholar
Williston, S. W. 1899. A new species of Sagenodus from the Kansas coal measures. Kansas University Quarterly 8, 175181.Google Scholar
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In Thomason, J. J. (ed.) Functional morphology in vertebrate paleontology, 933. New York: Cambridge University Press.Google Scholar
Woodward, A. 1891. Catalogue of the fossil fishes in the British museum part II. London: British Museum of Natural History. 576 pp.Google Scholar