Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T10:09:23.809Z Has data issue: false hasContentIssue false

XIII.—Granites and Associated Rocks of the Eastern Part of the Western Redhills Complex, Isle of Skye

Published online by Cambridge University Press:  06 July 2012

J. D. Bell
Affiliation:
Department of Geology and Mineralogy, Parks Road, Oxford.

Synopsis

The country lying between the head of Loch Ainort and the northern end of the Blaven Range in central Skye forms part of a Tertiary igneous complex. Country rocks in the area are Jurassic sediments. The earliest igneous rocks are basalt lavas which show the effects of thermal metamorphism by a later intrusion of eucrite and gabbro. This latter, which is part of the Blaven mass, has features of a layered intrusion such as igneous lamination, repetition of layers rich in certain minerals and comparable textures. It may be correlated with zones of the Cuillin layered intrusion. The eucrites are cut by a cone sheet swarm. Adjacent to the eucrite is a vent breccia which contains eucrite blocks, is not cut by cone sheets and is, therefore, of later age than the eucrite. The major part of the area under discussion is formed from four granitic ring dykes and a hybrid suite with ring dyke form, all of which belong to the Western Redhills intrusive complex; in addition, part of a fifth granitic ring dyke, which probably belongs to the Eastern Redhills intrusive complex is included in the area. The granites are mainly fayalite-hedenbergite types with a variety of phenocrysts of felspar and features characteristic of high level intrusions such as granophyric texture and varying optical and chemical properties of the felspar indicating higher temperature modifications. Three new chemical analyses of the granites and one of ferrohedenbergitic pyroxene are presented. The granites may be regarded as partial remelts of the underlying basement gneiss and a simple investigation of thermal requirements indicates that the heat necessary for the partial melting could be provided by a mass of basic rock presumed from geophysical evidence to underlie the complex. Various acid and basic minor intrusions in the area are also described.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Almond, D. C., 1964. “Metamoprhism of Tertiary Lavas in Strathaird, Skye”, Trans. Roy. Soc. Edin., 65, 413434.Google Scholar
Anderson, E. M., 1951. The Dynamics of Faulting and Dyke Formation, with applications to Britain. Edinburgh: Oliver & Boyd.Google Scholar
Anwar, Y. M., 1955. “A Clinopyroxene from the Granophyre of Meall Dearg Skye”, Geol. Mag., 92, 367373.CrossRefGoogle Scholar
Bailey, E. B., 1954. “Contact of Tertiary Lavas with Torridonian near Broadford, Skye”, Geol. Mag., 91, 105115.CrossRefGoogle Scholar
Bailey, E. B., et al., 1924. “Tertiary and Post-Tertiary Geology of Mull, Loch Aline, and Oban”, Mem. Geol. Surv. U.K.Google Scholar
Billings, M. P., 1954. Structural Geology. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Birch, F., Schairer, J. F., and Spicer, H. C. 1942. “Handbook of Physical Constants”, Spec. Pap. Geol. Soc. Amer., 36.Google Scholar
Black, G. P., 1954. “The Acid Rocks of Western Rhum”, Geol. Mag., 91, 257272.CrossRefGoogle Scholar
Brown, G. M., 1956. “The Layered Ultrabasic Rocks of Rhum, Inner Hebrides”, Phil. Trans., B., 240, 153.Google Scholar
Brown, G. M., 1963. “Melting Relations of Tertiary Granitic Rocks in Skye and Rhum”, Miner. Mag., 33, 533562.Google Scholar
Brown, G. M., and Vincent, E. A., 1963. “Pyroxenes from the Late Stages of Fractionation of the Skærgaard Intrusion, East Greenland”, J. Petrol., 4, 175197.CrossRefGoogle Scholar
Brown, P. E., 1956. “The Mourne Mountains Granites—a further study”, Geol. Mag., 93, 7284.CrossRefGoogle Scholar
Carmichael, I. S. E., 1960. “The Pyroxenes and Olivines from some Tertiary Acid Glasses”, J. Petrol., 1, 309336.Google Scholar
Carmichael, I. S. E., 1962. “Pantelleritic Liquids and their Phenocrysts”, Miner. Mag., 33, 86113.Google Scholar
Carmichael, I. S. E., 1963. “The Crystallization of Felspar in Volcanic Acid Liquids”, Quart. J. Geol. Soc. Lond., 119, 95131.CrossRefGoogle Scholar
Carr, J. M., 1952. “An Investigation of the Sgurr na Stri—Druim Hain Sector of the Basic Igneous Complex of the Cuillin Hills, Isle of Skye”. Unpublished D.Phil, thesis, Oxford Univ.Google Scholar
Cook, A. H., and Murphy, T., 1952. “Measurements of Gravity in Ireland; Gravity Survey of Ireland North of a Line Sligo-Dundalk”, Geophys. Mem., Dublin, 2, pt. 4.Google Scholar
Daly, R. A., 1933. Igneous Rocks and the Depths of the Earth. New York: McGraw-Hill.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J., 19611963. Rock Forming Minerals, 5 vols. London: Longmans.Google Scholar
Dunham, A. C., 1962. “The Petrology and Structure of the Northern Edge of the Tertiary Igneous Complex of Rhum”. Unpublished D.Phil. thesis, Oxford Univ.Google Scholar
Emeleus, C. H., 1956. “Studies of the granophyres and related rocks of the Slieve Gullion Tertiary igneous Complex, Ireland”. Unpublished D.Phil. thesis. Oxford Univ.Google Scholar
Fisher, R. V., 1960. “Classification of Volcanic Breccias”, Bull. Geol. Soc. Amer., 66, 973982.CrossRefGoogle Scholar
Fisher, R. V., 1961. “Proposed Classification of Volcaniclastic Sediments and Rocks”, Bull. Geol. Soc. Amer., 72, 14091414.CrossRefGoogle Scholar
Francis, E. H., 1960. “Intrusive Tuffs Related to the Firth of Forth Volcanoes”, Trans. Geol. Soc. Edin., 18, 3250.CrossRefGoogle Scholar
Grout, F. F., 1926. “The Use of Calculations in Petrology: A Study for Students”, J. Geol., 34, 512558.CrossRefGoogle Scholar
Hall, A. J., 1941. “Relation between Colour and Chemical Composition in Biotites”, Amer. Miner., 26, 2941.Google Scholar
Hamilton, W., 1960. “Silicic Differentiates of Lopoliths”, 22nd Int. Geol. Congr. Norden, pt. 13, 5967.Google Scholar
Harker, A., 1904. “The Tertiary Igneous Rocks of Skye”, Mem. Geol. Sun. U.K.CrossRefGoogle Scholar
Harry, W. T., 1953. “The Composite Granitic Gneiss of Western Ardgour, Argyll”, Quart. J. Geol. Soc. Lond., 109, 285309.CrossRefGoogle Scholar
Hess, H. H., 1960. “Stillwater Igneous Complex, Montana”, Mem. Geol. Soc. Amer., 80.Google Scholar
Hori, F., 1954. “Effects of Constituent Cations on the Optical Properties of Clinopyroxenes”, Sci. Pap. Coll. Gen. Educ., Univ. Tokyo, 4, 7183.Google Scholar
Hudson, J. D., 1962. “The Stratigraphy of the Great Estuarine Series (Middle Jurassic) of the Inner Hebrides”, Trans. Geol. Soc. Edin., 19, 139165.CrossRefGoogle Scholar
Hughes, C. J., 1960. “The Southern Mountains Igneous Complex, Isle of Rhum”, Quart. J. Geol. Soc. Lond., 114, 111138.CrossRefGoogle Scholar
Ingersoll, L. R., Zobel, O. J., and Ingersoll A. C., 1955. Heat Conduction with Engineering, Geological and other applications. London: Thames & Hudson.CrossRefGoogle Scholar
Jacobson, R. E., Macleod, N. M., and Black, R., 1958. “Ring Complexes in the Younger Granite Province of Nigeria”, Mem. Geol. Soc. Lond., 1.Google Scholar
Johnson, M. R. W., and Stewart, F. H., Ed., 1963. The British Caledonides. London: Oliver & Boyd.Google Scholar
King, B. C., 1954. “The Ard Bheinn Area of the Central Igneous Complex of Arran”, Quart. J. Geol. Soc. Lond., 110, 323355.CrossRefGoogle Scholar
Lovering, T. S., 1955. “Temperatures in and near Intrusions”, Econ. Geol. 50th Ann. Vol., 1, 249281.Google Scholar
McQuillin, R., and Tuson, J., 1965. “An Interpretation from Gravity Measurements of the Sizes of Some British Tertiary Granites”, Proc. Geol. Soc. Lond., 1621, 5961.Google Scholar
Mercy, E. L. P., 1960. “The Geochemistry of the Older Granodiorite and of the Rosses Granitic Ring Complex, Co. Donegal, Ireland”, Trans. Roy. Soc. Edin., 64, 101138.Google Scholar
Moorbath, S., and Bell, J. D., 1965. “Strontium Isotope Abundance Studies, and Rubidium-Strontium Age Determinations of Tertiary Igneous Rocks from the Isle of Skye, North-west Scotland”, J. Petrol., 6, 3766.CrossRefGoogle Scholar
Nockolds, S. R., 1954. “Average Chemical Compositions of Some Igneous Rocks”, Bull. Geol. Soc. Amer., 65, 10071032.CrossRefGoogle Scholar
Peach, B. N. et al. , 1910. “The Geology of Glenelg, Lochalsh and South-east Part of Skye”, Mem. Geol. Surv. U.K.Google Scholar
Poldervaart, A., 1950. “Correlation of Physical Properties and Chemical Composition in the Plagioclase, Olivine and Orthopyroxene Series”, Amer. Miner., 35, 10671079.Google Scholar
Poldervaart, A., and Gilkey, A. K., 1954. “On Clouded Plagioclase”, Amer. Miner., 39, 7591.Google Scholar
Reynolds, D. L., 1950. “The Transformation of Caledonian Granodiorite to Tertiary Granophyre on Slieve Gullion, Co. Armagh, N. Ireland”, 18th Int. Geol. Congr. Lond., pt. 3, 111.Google Scholar
Richey, J. E., 1932. “Tertiary Ring Structures in Great Britain”, Trans. Geol. Soc. Glasg., 19, 158224.Google Scholar
Richey, J. E., 1948. “Scotland: The Tertiary Volcanic Districts”, Brit. Reg. Geol.Google Scholar
Richey, J. E., Stewart, F. H., and Wager, L. R., 1946. “Age Relations of Certain Granites and Marscoite in Skye”, Geol. Mag., 83, 293.CrossRefGoogle Scholar
Richey, J. E., Stewart, F. H., and Wager, L. R., 1947. “Age Relations of Certain Granites in Skye”, Geol. Mag., 84, 128.CrossRefGoogle Scholar
Richey, J. E., and Thomas, H. H., 1930. “The Geology of Ardnamurchan, North-west Mull and Coll”, Mem. Geol. Surv. U.K.Google Scholar
Richey, J. E., and Thomas, H. H., 1932. “The Tertiary Ring Complex of Slieve Gullion (Ireland)”, Quart. J. Geol. Soc. Lond., 88, 776849.CrossRefGoogle Scholar
Smith, F. G., 1962. Physical Geochemistry. Reading, Mass.: Addison-Wesley.Google Scholar
Tuttle, O. F., and Bowen, N. L., 1958. “Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8—KAlSi3O8—SiO2—H2O”, Mem. Geol. Soc. Amer., 74.Google Scholar
Tuttle, O. F., and Keith, M. L., 1954. “The Granite Problem: Evidence from Quartz and Felspar of a Tertiary Granite”, Geol. Mag., 91, 6172.CrossRefGoogle Scholar
Verhoogen, J., 1949. “Thermodynamics of a Magmatic Gas Phase”, Bull. Dep. Geol. Univ. Calif., 28, 91136.Google Scholar
Verhoogen, J., 1951. “Mechanics of Ash Formation”, Amer. J. Sci., 249, 729739.CrossRefGoogle Scholar
Wager, L. R., Brown, G. M., and Wadsworth, W. J., 1960. “Types of Igneous Cumulates”, J. Petrol., 1, 7385.CrossRefGoogle Scholar
Wager, L. R., Vincent, E. A., Brown, G. M., and Bell, J. D., 1965. “Marscoite and Related Rocks of the Western Redhills Complex, Isle of Skye”, Phil. Trans., A, 257, 273307.Google Scholar
Wager, L. R., Weedon, D. S., and Vincent, E. A., 1953. “A granophyre from Coire Uaigneich, Isle of Skye, containing quartzparamorphs after tridymite”, Miner. Mag., 30, 263275.Google Scholar
Walker, F., and Poldervaart, A., 1949. “Karroo Dolerites of the Union of South Africa”, Bull. Geol. Soc. Amer., 60, 591706.CrossRefGoogle Scholar
Wentworth, C. K., and Williams, H., 1932. “The Classification and Terminology of the Pyroclastic Rocks”, Bull. Nat. Res. Coun. Wash., 89, 1953.Google Scholar
Whitten, E. H. T., 1960. “Average Composition of Granites, the Genesis of Tektites, and Petrogenesis”, Nature, Lond., 187, 867868.Google Scholar
Wilkinson, J. F. G., 1955. “The Terms Teschenite and Crinanite”, Geol. Mag., 92, 282290.CrossRefGoogle Scholar
Wyllie, P. J., 1961. “Fusion of Torridonian Sandstone by a Picrite Sill in Soay (Hebrides)”, J. Petrol., 2, 137.CrossRefGoogle Scholar
Zenz, F. A., and Othmer, D. F., 1960. Fluidization and Fluid-particle Systems. London: Chapman & Hall.Google Scholar
Zinovieff, P., 1958. “The Basic Layered Intrusion and the Associated Igneous Rocks of the Central and Eastern Cuillin Hills, Isle of Skye”, Unpublished D.Phil. thesis, Oxford Univ.Google Scholar