Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T02:17:10.337Z Has data issue: false hasContentIssue false

An Inexact Shift-and-Invert Arnoldi Algorithm for Large Non-Hermitian Generalised Toeplitz Eigenproblems

Published online by Cambridge University Press:  28 May 2015

Ting-Ting Feng
Affiliation:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P.R. China
Gang Wu*
Affiliation:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P.R. China Department of Mathematics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, P.R. China
Ting-Ting Xu
Affiliation:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P.R. China
*
*Corresponding author. Email addresses: tofengtingting@163.com (T.-T. Feng), gangwu76@126.com, wugangzy@gmail.com (G. Wu), xutingtingdream@163.com (T.-T. Xu)
Get access

Abstract

The shift-and-invert Arnoldi method is a most effective approach to compute a few eigenpairs of a large non-Hermitian Toeplitz matrix pencil, where the Gohberg-Semencul formula can be used to obtain the Toeplitz inverse. However, two large non-Hermitian Toeplitz systems must be solved in the first step of this method, and the cost becomes prohibitive if the desired accuracy for this step is high — especially for some ill-conditioned problems. To overcome this difficulty, we establish a relationship between the errors in solving these systems and the residual of the Toeplitz eigenproblem. We consequently present a practical stopping criterion for their numerical solution, and propose an inexact shift-and-invert Arnoldi algorithm for the generalised Toeplitz eigenproblem. Numerical experiments illustrate our theoretical results and demonstrate the efficiency of the new algorithm.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alonso, P., Bernabeub, M., Garca, and Vidal, A., Implementation and tuning of a parallel symmetric Toeplitz eigensolver, J. Parallel Distrib. Comput. 71, 485494 (2011).Google Scholar
[2]Bini, D. and Di Benedetto, F., Solving the generalised eigenvalue problem for rational Toeplitz matrices, SIAM J. Matrix Anal. Appl. 11, 537552 (1990).Google Scholar
[3]Bogoya, J., Bottcher, A. and Grudsky, S., Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices. Operator Theory: Advances and Applications 220, 7795 (2012).Google Scholar
[4]Chan, R. and Jin, X., An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia (2007).Google Scholar
[5]Chan, R. and Ng, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38, 427482 (1996).Google Scholar
[6]Gohberg, I. and Semencul, A., On the inversion of finite Toeplitz matrices and their continuous analogs, Mat. Issled. 2, 201233 (1972).Google Scholar
[7]Golub, G.H. and Van Loan, C.F., Matrix Computations, 4th edition, Johns Hopkins University Press (2012).Google Scholar
[8]Grudsky, S., Eigenvalues of larger Toeplitz matrices: The asymptotic approach, available from http://www.math.cinvestav.mx/~grudsky/talks.html (2010).Google Scholar
[9]Jia, Z. and Zhang, Y., A refined shift-and-invert Arnoldi algorithm for large unsymmetrix generalised eigenproblems, Comput. Math. Appl. 44, 11171127 (2002).CrossRefGoogle Scholar
[10]Kadanoff, L., Expansions for eigenfunctions and eigenvalues of large-n Toeplitz matrices, Papers in Physics 2, 020004 (2010).Google Scholar
[11]Lee, S., Pang, H. and Sun, H., Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput. 32, 774792 (2010).CrossRefGoogle Scholar
[12]Mogan, R. and Zeng, M., A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity, Linear Algebra Appl. 415. 96113 (2006).Google Scholar
[13]Ng, M., Preconditioned Lanczos methods for the minimum eigenvalue of a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Comput. 21, 19731986 (2000).CrossRefGoogle Scholar
[14]Ng, M., Iterative Methods for Toeplitz Systems, Oxford University Press (2004).Google Scholar
[15]Ng, M., Sun, H. and Jin, X., Recursive-based PCG methods for Toeplitz systems with nonnegative generating functions, SIAM J. Sci. Comput. 24, 15071529 (2003).CrossRefGoogle Scholar
[16]Oudin, M. and Delmas, J., Asymptotic generalised eigenvalue distribution of block multilevel Toeplitz matrices, IEEE Tran. Signal Processing 57. 382387 (2009).CrossRefGoogle Scholar
[17]Pang, H. and Sun, H., Shift-Invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential, Numer. Linear Algebra Appl. 18, 603614 (2011).CrossRefGoogle Scholar
[18]Parlett, B.N. and Saad, Y., Complex shift and invert strategies for real matrices, Linear Algebra Appl. 88/89, 575595 (1987).CrossRefGoogle Scholar
[19]Saad, Y., Numerical Methods for Large Eigenvalues Problems, 2nd edition, SIAM, Philadelphia (2011).CrossRefGoogle Scholar
[20]Sorensen, D., Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13, 357385 (1992).CrossRefGoogle Scholar
[21]Vidal, A., Garcia, V.Alonso, P. and Bernabeu, M., Parallel computation of the eigenvalues of symmetric Toeplitz matrices through iterative methods, J. Parallel Distrib. Comput. 68, 11131121 (2008).Google Scholar
[22]Wang, Y. and Lu, L., Preconditioned Lanczos method for generalised Toeplitz eigenvalue problems, J. Comput. Appl. Math. 226, 6676 (2009).Google Scholar
[23]Wu, G., Feng, T. and Wei, Y., An inexact shift-and-invert Arnoldi algorithm for Toeplitz matrix exponential, Numer. Linear Algebra Appl., accepted.Google Scholar
[24]Wu, K. and Simon, H., Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl. 22, 602616 (2000).CrossRefGoogle Scholar
[25]Zhang, L., Liu, W. and Peng, B., Generalised eigenvector problem for Hermitian Toeplitz matrices and its application to beamforming, Signal Proc. 92, 374380 (2012).Google Scholar