Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-16T09:08:17.535Z Has data issue: false hasContentIssue false

GOODNESS-OF-FIT TESTS FOR MULTIVARIATE COPULA-BASED TIME SERIES MODELS

Published online by Cambridge University Press:  29 January 2016

Betina Berghaus*
Affiliation:
Ruhr-Universität Bochum
Axel Bücher*
Affiliation:
Ruhr-Universität Bochum
*
*Address correspondence to Betina Berghaus, Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstr. 150, 44780 Bochum, Germany. E-mail: betina.berghaus@rub.de, axel.buecher@rub.de.
*Address correspondence to Betina Berghaus, Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstr. 150, 44780 Bochum, Germany. E-mail: betina.berghaus@rub.de, axel.buecher@rub.de.

Abstract

In recent years, stationary time series models based on copula functions became increasingly popular in econometrics to model nonlinear temporal and cross-sectional dependencies. Within these models, we consider the problem of testing the goodness-of-fit of the parametric form of the underlying copula. Our approach is based on a dependent multiplier bootstrap and it can be applied to any stationary, strongly mixing time series. The method extends recent i.i.d. results by Kojadinovic et al. (2011) and shares the same computational benefits compared to methods based on a parametric bootstrap. The finite-sample performance of our approach is investigated by Monte Carlo experiments for the case of copula-based Markovian time series models.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance, Mathematics and Economics 44(2), 182198.Google Scholar
Beare, B.K. (2010) Copulas and temporal dependence. Econometrica 78(1), 395410.Google Scholar
Beare, B.K. & Seo, J. (2014) Time irreversible copula-based markov models. Econometric Theory 30, 923960.Google Scholar
Berg, D. & Quessy, J.-F. (2009) Local power analyses of goodness-of-fit tests for copulas. Scandinavian Journal of Statistics 36(3), 389412.Google Scholar
Berghaus, B. & Bücher, A. (2015) Online Supplement to “Goodness-of-fit tests for multivariate copula-based time series models”.Google Scholar
Billingsley, P. (1999) Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley.Google Scholar
Bücher, A. & Dette, H. (2010) A note on bootstrap approximations for the empirical copula process. Statistics and Probability Letters 80, 19251932.CrossRefGoogle Scholar
Bücher, A., Dette, H., & Volgushev, S. (2011) New estimators of the Pickands dependence function and a test for extreme-value dependence. Annals of Statistics 39(4), 19632006.CrossRefGoogle Scholar
Bücher, A., Dette, H., & Volgushev, S. (2012) A test for Archimedeanity in bivariate copula models. Journal of Multivariate Analysis 110, 121132.Google Scholar
Bücher, A. & Kojadinovic, I. (2015) A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing. Bernoulli, in press.Google Scholar
Bücher, A. & Ruppert, M. (2013) Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique. Journal of Multivariate Analysis 116, 208229.Google Scholar
Bücher, A. & Volgushev, S. (2013) Empirical and sequential empirical copula processes under serial dependence. Journal of Multivariate Analysis 119, 6170.Google Scholar
Bühlmann, P.L. (1993) The blockwise bootstrap in time series and empirical processes. Thesis (Dr.Sc.Math)–Eidgenoessische Technische Hochschule Zürich (Switzerland), ProQuest LLC.Google Scholar
Cebrián, A.C., Denuit, M., & Scaillet, O. (2004) Testing for concordance ordering. Astin Bulletin 34(1), 151173.CrossRefGoogle Scholar
Chen, X. & Fan, Y. (2006a) Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics 135(12), 125154.Google Scholar
Chen, X. & Fan, Y. (2006b) Estimation of copula-based semiparametric time series models. Journal of Econometrics 130(2), 307335.Google Scholar
Darsow, W.F., Nguyen, B., & Olsen, E.T. (1992) Copulas and Markov processes. Illinois Journal of Mathematics 36(4), 600642.Google Scholar
Deheuvels, P. (1979) La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Academie Royale de Belgique. Bulletin de la Classe des Sciences (5) 65(6), 274292.Google Scholar
Dehling, H. & Philipp, W. (2002) Empirical process techniques for dependent data. In Empirical Process Techniques for Dependent Data, pp. 3113. Birkhäuser Boston.Google Scholar
Denuit, M., Goderniaux, A.-C., & Scaillet, O. (2007) A Kolmogorov-Smirnov-type test for shortfall dominance against parametric alternatives. Technometrics 49(1), 8898.Google Scholar
Eckert, A. (2002) Retail price cycles and response asymmetry. Canadian Journal of Economics/Revue canadienne d’conomique 35(1), 5277.Google Scholar
Fermanian, J.-D. (2013) An overview of the goodness-of-fit test problem for copulas. In Jaworski, P., Durante, F., & Hrdle, W.K. (eds.), Copulae in Mathematical and Quantitative Finance. Lecture Notes in Statistics, pp. 6189. Springer.Google Scholar
Fermanian, J.-D., Radulović, D., & Wegkamp, M. (2004) Weak convergence of empirical copula processes. Bernoulli 10(5), 847860.Google Scholar
Frees, E.W. & Valdez, E.A. (1998) Understanding relationships using copulas. North American Actuarial Journal 2(1), 125.CrossRefGoogle Scholar
Genest, C., Ghoudi, K., & Rivest, L.-P. (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3), 543552.Google Scholar
Genest, C., Nešlehová, J., & Quessy, J.-F. (2011) Tests of symmetry for bivariate copulas. The Annals of the Institute of Statistical Mathematics 64, 811834.Google Scholar
Genest, C., Rémillard, B., & Beaudoin, D. (2009) Goodness-of-fit tests for copulas: A review and a power study. Insurance, Mathematics and Economics 44(2), 199213.Google Scholar
Hofert, M., Kojadinovic, I., Maechler, M., & Yan, J. (2015) Copula: Multivariate Dependence with Copulas. R package version 0.999-13.Google Scholar
Khoudraji, A. (1995) Contributions à l’étude des copules et à la modélisation de valeurs extrêmes bivariées. Ph.D thesis, Université Laval.Google Scholar
Kojadinovic, I., Segers, J., & Yan, J. (2011) Large-sample tests of extreme-value dependence for multivariate copulas. Canadian Journal of Statistics 39(4), 703720.CrossRefGoogle Scholar
Kojadinovic, I. & Yan, J. (2011) A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Statistics and Computing 21(1), 1730.Google Scholar
Kojadinovic, I. & Yan, J. (2012) A non-parametric test of exchangeability for extreme-value and left-tail decreasing bivariate copulas. Scandinavian Journal of Statistics 39(3), 480496.Google Scholar
Kojadinovic, I., Yan, J., & Holmes, M. (2011) Fast large-sample goodness-of-fit tests for copulas. Statistica Sinic 21(2), 841871.Google Scholar
Kosorok, M.R. (2008) Introduction to Empirical Processes and Semiparametric Inference. Springer Series in Statistics. Springer.CrossRefGoogle Scholar
Liebscher, E. (2008) Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis 99(10), 22342250.CrossRefGoogle Scholar
McCausland, W.J. (2007) Time reversibility of stationary regular finite-state markov chains. Journal of Econometrics 136(1), 303318.CrossRefGoogle Scholar
McNeil, A.J., Frey, R., & Embrechts, P. (2005) Quantitative Risk Management. Princeton Series in Finance. Princeton University Press. Concepts, techniques and tools.Google Scholar
Móricz, F. (1982) A general moment inequality for the maximum of partial sums of single series. Acta Scientiarum Mathematicarum (Szeged) 44(12), 6775.Google Scholar
Okhrin, O., Okhrin, Y., & Schmid, W. (2013) On the structure and estimation of hierarchical archimedean copulas. Journal of Econometrics 173(2), 189204.Google Scholar
Politis, D.N. & White, H. (2004) Automatic block-length selection for the dependent bootstrap. Econometric Reviews 23(1), 5370.CrossRefGoogle Scholar
Radulovic, D., Wegkamp, M., & Zhao, Y. (2015) Weak convergence of empirical copula processes indexed by functions, arXiv:1410.4150.Google Scholar
Rémillard, B. (2010) Goodness-of-fit tests for copulas of multivariate time series. Technical report, HEC Montréal.Google Scholar
Rémillard, B., Papageorgiou, N., & Soustra, F. (2012) Copula-based semiparametric models for multivariate time series. Journal of Multivariate Analysis 110, 3042.Google Scholar
Rémillard, B. & Scaillet, O. (2009) Testing for equality between two copulas. Journal of Multivariate Analysis 100(3), 377386.Google Scholar
Rio, E. (2000) Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 31. Springer-Verlag.Google Scholar
Rüschendorf, L. (1976) Asymptotic distributions of multivariate rank order statistics. Annals of Statistics 4, 912923.Google Scholar
Ruymgaart, F.H. (1973) Asymptotic Ttheory of Rank Tests for Independence. Mathematical Centre Tracts, vol. 43. Mathematisch Centrum.Google Scholar
Scaillet, O. (2005) A Kolmogorov-Smirnov type test for positive quadrant dependence. Canadian Journal of Statistics 33(3), 415427.Google Scholar
Scaillet, O. (2007) Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters. Journal of Multivariate Analysis 98(3), 533543.Google Scholar
Segers, J. (2012) Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18(3), 764782.Google Scholar
Shao, Q.-M. & Yu, H. (1996) Weak convergence for weighted empirical processes of dependent sequences. Annals of Probability 24(4), 20982127.Google Scholar
Tsukahara, H. (2005) Semiparametric estimation in copula models. Canadian Journal of Statistics 33(3), 357375.Google Scholar
Supplementary material: File

Berghaus and Bücher supplementary material S1

Berghaus and Bücher supplementary material

Download Berghaus and Bücher supplementary material S1(File)
File 44.8 KB
Supplementary material: PDF

Berghaus and Bücher supplementary material S2

Berghaus and Bücher supplementary material

Download Berghaus and Bücher supplementary material S2(PDF)
PDF 349.1 KB
Supplementary material: PDF

Berghaus and Bücher supplementary material S3

Berghaus and Bücher supplementary material

Download Berghaus and Bücher supplementary material S3(PDF)
PDF 10.5 KB
Supplementary material: PDF

Berghaus and Bücher supplementary material S4

Berghaus and Bücher supplementary material

Download Berghaus and Bücher supplementary material S4(PDF)
PDF 10.4 KB