Hostname: page-component-7f64f4797f-bnl7t Total loading time: 0 Render date: 2025-11-06T16:48:32.101Z Has data issue: false hasContentIssue false

ASYMPTOTIC PROPERTIES OF THE GAUGE AND POWER OF STEP-INDICATOR SATURATION

Published online by Cambridge University Press:  06 November 2025

Bent Nielsen*
Affiliation:
University of Oxford
Matthias Qian
Affiliation:
ESMT Berlin
*
Address correspondence to Bent Nielsen, Nuffield College, Oxford, OX1 1NF, United Kingdom, e-mail: bent.nielsen@nuffield.ox.ac.uk.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Detecting multiple structural breaks at unknown dates is a central challenge in time-series econometrics. Step-indicator saturation (SIS) addresses this challenge during model selection, and we develop its asymptotic theory for tuning parameter choice. We study its frequency gauge—the false detection rate—and show it is consistent and asymptotically normal. Simulations suggest that a smaller gauge minimizes bias in post-selection regression estimates. For the small gauge situation, we develop a complementary Poisson theory. We compare the local power of SIS to detect shifts with that of Andrews’ break test. We find that SIS excels when breaks are near the sample end or closely spaced. An application to U.K. labor productivity reveals a growth slowdown after the 2008 financial crisis.

Information

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Footnotes

Comments from three anonymous referees are gratefully acknowledged. B.N. acknowledges support from the Aarhus Center for Econometrics (ACE) funded by the Danish National Foundation grant DNRF186. M.Q. acknowledges financial support by the David Walton Memorial Fund (Department of Economics, University of Oxford) and the Studienstiftung des deutschen Volkes.

References

Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica , 61, 821856.10.2307/2951764CrossRefGoogle Scholar
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies , 58(2), 277297.10.2307/2297968CrossRefGoogle Scholar
Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica , 66, 4778.10.2307/2998540CrossRefGoogle Scholar
Becker, W., Paruolo, P., & Saltelli, A. (2021). Variable selection in regression models using global sensitivity analysis. Journal of Time Series Econometrics , 13, 187233.10.1515/jtse-2018-0025CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) , 57, 289300.10.1111/j.2517-6161.1995.tb02031.xCrossRefGoogle Scholar
Berenguer-Rico, V., Johansen, S., & Nielsen, B. (2023). A model where the least trimmed squares estimator is maximum likelihood. Journal of the Royal Statistical Society. Series B , 85, 886912.10.1093/jrsssb/qkad028CrossRefGoogle Scholar
Berenguer-Rico, V., & Nielsen, B. (2023). Normality testing after outlier removal. Econometrics and Statistics, To appear.10.1016/j.ecosta.2023.06.001CrossRefGoogle Scholar
Berenguer-Rico, V., & Wilms, I. (2021). Heteroscedasticity testing after outlier removal. Econometric Reviews , 40, 5185.10.1080/07474938.2020.1735749CrossRefGoogle Scholar
Bernstein, D. H., & Martinez, A. B. (2021). Jointly modeling male and female labor participation and unemployment. Econometrics , 9(4), 46.10.3390/econometrics9040046CrossRefGoogle Scholar
Billingsley, P. (1968). Convergence of probability measures . John Wiley & Sons.Google Scholar
Castle, J. L., Doornik, J. A., & Hendry, D. F. (2011). Evaluating automatic model selection. Journal of Time Series Econometrics , 3, 1941.10.2202/1941-1928.1097CrossRefGoogle Scholar
Castle, J. L., Doornik, J. A., Hendry, D. F., & Pretis, F. (2015). Detecting location shifts during model selection by step-indicator saturation. Econometrics , 3, 240264.10.3390/econometrics3020240CrossRefGoogle Scholar
Castle, J. L., & Hendry, D. F. (2014). Model selection in under-specified equations facing breaks. Journal of Econometrics , 178, 286293.10.1016/j.jeconom.2013.08.028CrossRefGoogle Scholar
Castle, J. L., Hendry, D. F., & Martinez, A. B. (2023). The historical role of energy in UK inflation and productivity with implications for price inflation. Energy Economics , 126, 106947.10.1016/j.eneco.2023.106947CrossRefGoogle Scholar
Chadha, J. S. (2022). Productivity in the UK: Evidence review. Report of the UK productivity commission. National Institute of Economic and Social Research.Google Scholar
Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Annals of Probability , 3, 534545.10.1214/aop/1176996359CrossRefGoogle Scholar
Chuffart, T., & Hooper, E. (2019). An investigation of oil prices impact on sovereign credit default swaps in Russia and Venezuela. Energy Economics , 80, 904916.10.1016/j.eneco.2019.02.003CrossRefGoogle Scholar
Clements, M. P., & Hendry, D. F. (1998). Forecasting economic time series . Cambridge University Press.CrossRefGoogle Scholar
Doornik, J. A. (2009). Autometrics. Castle and Shephard , 2009, 88121.Google Scholar
Doornik, J. A., Castle, J. L., & Hendry, D. F. (2022). Short-term forecasting of the coronavirus pandemic. International Journal of Forecasting , 38(2), 453466.10.1016/j.ijforecast.2020.09.003CrossRefGoogle ScholarPubMed
Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics , 70, 927939.10.1111/j.1468-0084.2008.00537.xCrossRefGoogle Scholar
Doornik, J. A., & Hendry, D. F. (2013). PcGive 14 . (Vol. 1). Timberlake.Google Scholar
Dudoit, S., & van der Laan, M. J. (2010). Multiple testing procedures with applications to genomics . Springer.Google Scholar
EViews (2020). Using indicator saturation to detect outliers and structural shifts. https://blog.eviews.com/2020/12/using-indicator-saturation-to-detect.html.Google Scholar
Giraitis, L., Koul, H. L., & Surgailis, D. (2012). Large sample inference for long memory processes . Imperial College Press.10.1142/p591CrossRefGoogle Scholar
Godfrey, L. G. (1978). Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica , 46, 12931301.10.2307/1913829CrossRefGoogle Scholar
Hendry, D. F., & Doornik, J. A. (2014). Empirical model discovery and theory evaluation: Automatic selection methods in econometrics . MIT Press.10.7551/mitpress/9780262028356.001.0001CrossRefGoogle Scholar
Hendry, D. F., Johansen, S., & Santos, C. (2008). Automatic selection of indicators in fully saturated regression. Computational Statistics , 23, 317335. Erratum ibid. pp. 337–339.10.1007/s00180-008-0112-1CrossRefGoogle Scholar
Hendry, D. F., & Krolzig, H.-M. (2005). The properties of automatic gets modelling. Economic Journal , 115, 3261.10.1111/j.0013-0133.2005.00979.xCrossRefGoogle Scholar
Hendry, D. F., & Mizon, G. E. (2011). Econometric modelling of time series with outlying observations. Journal of Time Series Econometrics , 3, 1941.10.2202/1941-1928.1100CrossRefGoogle Scholar
Hendry, D. F., & Nielsen, B. (2007). Econometric modeling: A likelihood approach . Princeton University Press.10.1515/9781400845651CrossRefGoogle Scholar
Hendry, D. F., & Santos, C. (2010). An automatic test of super exogeneity. In Bollerslev, T., Russell, J. R., & Watson, M. W. (Eds.), Volatility and time series econometrics . Oxford University Press.Google Scholar
Hidalgo, J., & Seo, M. H. (2013). Testing for structural stability in the whole sample. Journal of Econometrics , 175, 8493.10.1016/j.jeconom.2013.02.008CrossRefGoogle Scholar
Hoover, K. D., & Perez, S. J. (1999). Data mining reconsidered: Encompassing and the general-to-specific approach to specification search. The Econometrics Journal , 2, 167191.10.1111/1368-423X.00025CrossRefGoogle Scholar
Jiao, X. (2019). A simple robust procedure in instrumental variables regression . University of Oxford.Google Scholar
Jiao, X., & Pretis, F. (2022). Testing the presence of outliers in regression models. Oxford Bulletin of Economics and Statistics , 84, 14521484.10.1111/obes.12511CrossRefGoogle Scholar
Johansen, S., & Nielsen, B. (2009). Saturation by indicators in regression models. Castle and Shephard , 2009, 136.Google Scholar
Johansen, S., & Nielsen, B. (2013). Asymptotic theory for iterated one-step Huber-skip estimators. Econometrics , 1, 5370.10.3390/econometrics1010053CrossRefGoogle Scholar
Johansen, S., & Nielsen, B. (2016a). Analysis of the forward search using some new results for martingales and empirical processes. Bernoulli , 22, 11311183. Corrigendum (2019) 25, 3201.10.3150/14-BEJ689CrossRefGoogle Scholar
Johansen, S., & Nielsen, B. (2016b). Asymptotic theory of outlier detection algorithms for linear time series regression models (with discussion). Scandinavian Journal of Statistics , 43, 321381.10.1111/sjos.12174CrossRefGoogle Scholar
Johansen, S., & Nielsen, B. (2016c). Rejoinder: Asymptotic theory of outlier detection algorithms for linear time series regression models. Scandinavian Journal of Statistics , 43, 374381.10.1111/sjos.12211CrossRefGoogle Scholar
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1993). Continuous univariate distributions . (Vol. 2, 2nd ed.) John Wiley & Sons.Google Scholar
Kilian, L., & Demiroglu, U. (2000). Residual-based tests for normality in autoregressions: Asymptotic theory and simulation evidence. Journal of Business & Economic Statistics , 18, 4050.10.1080/07350015.2000.10524846CrossRefGoogle Scholar
Koch, N., Naumann, L., Pretis, F., Ritter, N., & Schwarz, M. (2022). Attributing agnostically detected large reductions in road co2 emissions to policy mixes. Nature Energy , 7(9), 844853.10.1038/s41560-022-01095-6CrossRefGoogle Scholar
Koul, H. L., & Ossiander, M. (1994). Weak convergence of randomly weighted dependent residual empiricals with applications to autoregression. Annals of Statistics , 22, 540562.10.1214/aos/1176325383CrossRefGoogle Scholar
Lancaster, T. (2000). The incidental parameter problem since 1948. Journal of Econometrics , 95(2), 391413.10.1016/S0304-4076(99)00044-5CrossRefGoogle Scholar
Lancaster, T. (2002). Orthogonal parameters and panel data. The Review of Economic Studies , 69(3), 647666.10.1111/1467-937X.t01-1-00025CrossRefGoogle Scholar
Marczak, M., & Proietti, T. (2016). Outlier detection in structural time series models: The indicator satuation approach. International Journal of Forecasting , 32, 180202.10.1016/j.ijforecast.2015.04.005CrossRefGoogle Scholar
Marriott, F., & Pope, J. (1954). Bias in the estimation of autocorrelations. Biometrika , 41(3–4), 390402.10.1093/biomet/41.3-4.390CrossRefGoogle Scholar
McLeish, D. L. (1977). On the invariance principle for nonstationary mixingales. Annals of Probability , 5, 616621.10.1214/aop/1176995772CrossRefGoogle Scholar
Miller, R. G. (1981). Simultaneous statistical inference . (2nd ed.). Springer.10.1007/978-1-4613-8122-8CrossRefGoogle Scholar
Nielsen, B. (2006). Order determination in general vector autoregressions. In Ho, H. C., Ing, C. K., & Lai, T. L. (Eds.), Time series and related topics: In memory of Ching-Zong Wei , volume 52 of Lecture Notes–Monograph Series (pp. 93112). Institute of Mathematical Statistics.10.1214/074921706000000978CrossRefGoogle Scholar
Nielsen, B., & Whitby, A. (2015). A joint Chow test for structural instability. Econometrics , 3, 156186.10.3390/econometrics3010156CrossRefGoogle Scholar
O’Callaghan, B., Yau, N., & Hepburn, C. (2022). How stimulating is a green stimulus? The economic attributes of green fiscal spending. Annual Review of Environment and Resources , 47, 697723.10.1146/annurev-environ-112420-020640CrossRefGoogle Scholar
Owen, D. B. (1980). A table of normal integrals. Communications in Statistics. Simulation and Computation , 9, 389419.10.1080/03610918008812164CrossRefGoogle Scholar
Pellini, E. (2021). Estimating income and price elasticities of residential electricity demand with autometrics. Energy Economics , 101, 105411.10.1016/j.eneco.2021.105411CrossRefGoogle Scholar
Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica , 57, 13611401. Erratum in volume 61, 248–249.10.2307/1913712CrossRefGoogle Scholar
Pretis, F., Reade, J., & Sucarrat, G. (2018a). Automated general-to-specific (gets) regression modeling and indicator saturation for outliers and structural breaks. Journal of Statistical Software , 86, 144.10.18637/jss.v086.i03CrossRefGoogle Scholar
Pretis, F., Schwarz, M., Tang, K., Haustein, K., & Allen, M. R. (2018b). Uncertain impacts on economic growth when stabilizing global temperatures at 1.5 c or 2 c warming. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 376(2119), 20160460.10.1098/rsta.2016.0460CrossRefGoogle Scholar
Raggad, B. (2018). Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: Evidence from the ardl approach and impulse saturation break tests. Environmental Science and Pollution Research , 25, 1488214898.10.1007/s11356-018-1698-7CrossRefGoogle ScholarPubMed
Sheppard, K. (2018). MFE MATLAB function reference financial econometrics. www.kevinsheppard.com Google Scholar
Skorokhod, A. V. (1956). Limit theorems for stochastic processes. Theory of Probability and its Applications , 1, 261290.10.1137/1101022CrossRefGoogle Scholar
Sucarrat, G. (2020). User-specified general-to-specific and indicator saturation methods. R Journal , 12, 251265.Google Scholar
Whitt, W. (2002). Stochastic-process limits: An introduction to stochastic-process limits and their application to queues . Springer.10.1007/b97479CrossRefGoogle Scholar
Yao, Y. C., & Davis, R. A. (1986). The asymptotic behavior of the likelihood ratio test statistic for testing a shift in mean in a sequence of independent normal variables. Sankhya A , 48, 339353.Google Scholar
Supplementary material: File

Nielsen and Qian supplementary material

Nielsen and Qian supplementary material
Download Nielsen and Qian supplementary material(File)
File 396.8 KB