Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T17:15:43.111Z Has data issue: false hasContentIssue false

COPULA-BASED CHARACTERIZATIONS FOR HIGHER ORDER MARKOV PROCESSES

Published online by Cambridge University Press:  01 June 2009

Abstract

In this paper, we obtain characterizations of higher order Markov processes in terms of copulas corresponding to their finite-dimensional distributions. The results are applied to establish necessary and sufficient conditions for Markov processes of a given order to exhibit m-dependence, r-independence, or conditional symmetry. The paper also presents a study of applicability and limitations of different copula families in constructing higher order Markov processes with the preceding dependence properties. We further introduce new classes of copulas that allow one to combine Markovness with m-dependence or r-independence in time series.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was previously circulated under the title “Copula-Based Dependence Characterizations and Modeling for Time Series." An extended working paper version of the paper is available as Ibragimov, 2005, “Copula-Based Dependence Characterizations and Modeling for Time Series,” Harvard Institute of Economic Research Discussion paper 2094. I thank three referees, Donald Andrews, Brendan Beare, Christian Gourieroux, George Lentzas, Jeremiah Lowin, Andrew Patton, Peter Phillips, Murray Rosenblatt, Yildiray Yildirim, and the participants at seminars at the Departments of Economics at Boston University, Harvard University, and Yale University, Whitman School of Management at Syracuse University, and the Harvard Statistics Summer Retreat on Recent Advances in Computational Finance (June 2006) for helpful comments and suggestions. A part of the paper was completed under financial support from a Yale University Dissertation Fellowship and a Cowles Foundation Prize.

References

REFERENCES

Aaronson, J., Gilat, D., & Keane, M. (1992) On the structure of 1-dependent Markov chains. Journal of Theoretical Probability 5, 545561.10.1007/BF01060435CrossRefGoogle Scholar
Breymann, W., Dias, A., & Embrechts, P. (2003) Dependence structures for multivariate high-frequency data in finance. Quantitative Finance 3, 114.10.1080/713666155CrossRefGoogle Scholar
Burton, R.M., Goulet, M., & Meester, R. (1993) On 1-dependent processes and k-block factors. Annals of Probability 21, 21572168.10.1214/aop/1176989014CrossRefGoogle Scholar
Cambanis, S. (1977) Some properties and generalizations of multivariate Eyraud-Gumbel- Morgenstern distributions. Journal of Multivariate Analysis 7, 551559.10.1016/0047-259X(77)90066-5CrossRefGoogle Scholar
Cambanis, S. (1991) On Eyraud-Farlie-Gumbel-Morgenstern random processes. In Dall’aglio, G., Kotz, S., & Salinetti, G. (eds.), Advances in probability Distributions with Given Marginals, pp. 207222. Mathematics and Its Applications 67. Kluwer.CrossRefGoogle Scholar
Chen, X. & Fan, Y. (2004) Evaluating density forecasts via the copula approach. Finance Research Letters 1, 7484.CrossRefGoogle Scholar
Chen, X. & Fan, Y. (2006) Estimation of copula-based semiparametric time series models. Journal of Econometrics 130, 307335.CrossRefGoogle Scholar
Cherubini, U., Luciano, E., & Vecchiato, W. (2004) Copula Methods in Finance. Wiley.10.1002/9781118673331CrossRefGoogle Scholar
Cont, R. (2001) Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance 1, 223236.10.1080/713665670CrossRefGoogle Scholar
Darsow, W.F., Nguyen, B., & Olsen, E.T. (1992) Copulas and Markov processes. Illinois Journal of Mathematics 36, 600642.10.1215/ijm/1255987328CrossRefGoogle Scholar
de la Peña, V.H., Ibragimov, R., & Sharakhmetov, S. (2006) Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series. In Rojo, J.(ed.), 2nd Erich L. Lehmann Symposium—Optimality, pp. 183209. IMS Lecture Notes—Monograph Series 49. Available at http://dx.doi.org/10.1214/074921706000000455.Google Scholar
Doukhan, P., Fermanian, J.-D., & Lang, G. (2004) Copulas of a Vector-Valued Stationary Weakly Dependent Process. Working paper, CREST.Google Scholar
Embrechts, P., Lindskog, F., & McNeil, A. (2003) Modeling dependence with copulas and applications to risk management. In Rachev, S. (ed.), Handbook of Heavy Tailed Distributions in Finance, pp. 329384. Elsevier.CrossRefGoogle Scholar
Embrechts, P., McNeil, A., & Straumann, D. (2002) Correlation and dependence in risk management: Properties and pitfalls. In Dempster, M.A.H. (ed.), Risk Management: Value at Risk and Beyond, pp. 176223. Cambridge University Press.10.1017/CBO9780511615337.008CrossRefGoogle Scholar
Feller, W. (1959) Non-Markovian processes with the semi-group property. Annals of Mathematical Statistics 30, 12521253.10.1214/aoms/1177706110CrossRefGoogle Scholar
Fermanian, J.-D., Radulović, D., & Wegkamp, M. (2004) Weak convergence of empirical copula process. Bernoulli 10, 847860.10.3150/bj/1099579158CrossRefGoogle Scholar
Gouriéroux, C. & Monfort, A. (1979) On the characterization of a joint probability distribution by conditional distributions. Journal of Econometrics 10, 115118.10.1016/0304-4076(79)90070-8CrossRefGoogle Scholar
Granger, C.W.J., Teräsvirta, T., & Patton, A.J. (2006) Common factors in conditional distributions. Journal of Econometrics 132, 4357.10.1016/j.jeconom.2005.01.022CrossRefGoogle Scholar
Hu, L. (2006) Dependence patterns across financial markets: A mixed copula approach. Applied Financial Economics 16, 717729.10.1080/09603100500426515CrossRefGoogle Scholar
Ibragimov, R. (2005a) Copula-Based Dependence Characterizations and Modeling for Time Series. Harvard Institute of Economic Research Discussion paper 2094. Available at http://www.economics.harvard.edu/pub/hier/2005/HIER2094.pdf.CrossRefGoogle Scholar
Ibragimov, R. (2005b) New majorization theory in economics and martingale convergence results in econometrics. Ph.D. dissertation, Yale University.Google Scholar
Ibragimov, R. (2009) Heavy-tailed densities. In Durlauf, S.N. & Blume, L.E. (eds.), The New Palgrave Dictionary Online. Palgrave Macmillan. Available at http://www.dictionaryofeconomics.com/article?id=pde2008_H000191.Google Scholar
Joe, H. (1987) Majorization, randomness and dependence for multivariate distributions. Annals of Probability 15, 12171225.10.1214/aop/1176992093CrossRefGoogle Scholar
Joe, H. (1989) Relative entropy measures of multivariate dependence. Journal of the American Statistical Association 84, 157164.10.1080/01621459.1989.10478751CrossRefGoogle Scholar
Joe, H. (1997) Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability 73. Chapman and Hall.Google Scholar
Johnson, N.L. & Kotz, S. (1975) On some generalized Farlie-Gumbel-Morgenstern distributions. Communications in Statistics 4, 415424.CrossRefGoogle Scholar
Lévy, P. (1949) Exemples de processus pseudo-markoviens. Comptes Rendus de l’Académie des Sciences 228, 20042006.Google Scholar
Loretan, M. & Phillips, P.C.B. (1994). Testing the covariance stationarity of heavy-tailed time series. Journal of Empirical Finance 3, 211248.10.1016/0927-5398(94)90004-3CrossRefGoogle Scholar
Lowin, J. (2007) The Fourier copula: Theory and applications. Senior thesis, Harvard University.Google Scholar
Matúš, F. (1996) On two-block-factor sequences and one-dependence. Proceedings of the American Mathematical Society 124, 12371242.10.1090/S0002-9939-96-03094-8CrossRefGoogle Scholar
Matúš, F. (1998) Combining m-dependence with Markovness. Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 34, 407423.10.1016/S0246-0203(98)80023-XCrossRefGoogle Scholar
McNeil, A.J., Frey, R., & Embrechts, P. (2005) Quantitative Risk Management. Concepts, Techniques and Tools. Princeton University Press.Google Scholar
Nelsen, R.B. (1996) Nonparametric measures of multivariate association. In Rüschendorf, L., Schweizer, B., & Taylor, M.D. (eds.), Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), pp. 223232. IMS Lecture Notes—Monograph Series 28.10.1214/lnms/1215452621CrossRefGoogle Scholar
Nelsen, R.B. (1999) An Introduction to Copulas. Lecture Notes in Statistics 139. Springer-Verlag.10.1007/978-1-4757-3076-0CrossRefGoogle Scholar
Patton, A. (2004) On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. Journal of Financial Econometrics 2, 130168.CrossRefGoogle Scholar
Patton, A. (2006) Modelling asymmetric exchange rate dependence. International Economic Review 47, 527556.10.1111/j.1468-2354.2006.00387.xCrossRefGoogle Scholar
Rosenblatt, M. (1952) Remarks on a multivariate transformation. Annals of Mathematical Statistics 23, 470472.CrossRefGoogle Scholar
Rosenblatt, M. (1960) An aggregation problem for Markov chains. In Machol, R.E. (ed.), Information and Decision Processes, pp. 8792. McGraw-Hill.Google Scholar
Rosenblatt, M. (1971) Markov Processes. Structure and Asymptotic Behavior. Springer-Verlag.CrossRefGoogle Scholar
Rosenblatt, M. & Slepian, D. (1962) Nth order Markov chains with every N variables independent. Journal of the Society for Industrial and Applied Mathematics 10, 537549.CrossRefGoogle Scholar
Sancetta, A. & Satchell, S. (2004). The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econometric Theory 20, 535562.CrossRefGoogle Scholar
Sharakhmetov, S. & Ibragimov, R. (2002) A characterization of joint distribution of two-valued random variables and its applications. Journal of Multivariate Analysis 83, 389408.10.1006/jmva.2001.2059CrossRefGoogle Scholar
Sklar, A. (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de Statistique de l'Université de Paris 8, 229231.Google Scholar
Slepian, D. (1972) On the symmetrized Kronecker power of a matrix and extensions of Mehler’s formula for Hermite polynomials. SIAM Journal on Mathematical Analysis 3, 606616.CrossRefGoogle Scholar