Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T13:26:29.356Z Has data issue: false hasContentIssue false

EFFICIENCY IN LARGE DYNAMIC PANEL MODELS WITH COMMON FACTORS

Published online by Cambridge University Press:  16 April 2014

Patrick Gagliardini*
Affiliation:
Università della Svizzera Italiana
Christian Gourieroux
Affiliation:
CREST (Paris) and University of Toronto
*
*Address correspondence to Patrick Gagliardini, Università della Svizzera Italiana, Faculty of Economics, Via Buffi 13, CH-6900 Lugano, Switzerland; e-mail: patrick.gagliardini@usi.ch.

Abstract

This paper deals with asymptotically efficient estimation in exchangeable nonlinear dynamic panel models with common unobservable factors. These models are relevant for applications to large portfolios of credits, corporate bonds, or life insurance contracts. For instance, the Asymptotic Risk Factor (ARF) model is recommended in the current regulation in Finance (Basel II and Basel III) and Insurance (Solvency II) for risk prediction and computation of the required capital. The specification accounts for both micro- and macrodynamics, induced by the lagged individual observations and the common stochastic factors, respectively. For large cross-sectional and time dimensions n and T, we derive the efficiency bound and introduce computationally simple efficient estimators for both the micro- and macroparameters. The results are based on an asymptotic expansion of the log-likelihood function in powers of 1/n, and are linked to granularity theory. The results are illustrated with the stochastic migration model for credit risk analysis.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amemiya, T. (1985) Advanced Econometrics. Harvard University Press.Google Scholar
Andrews, D. (1988) Laws of large numbers for dependent non-identically distributed random variables. Econometric Theory 4, 458467.CrossRefGoogle Scholar
Andrews, D. (2005) Cross-section regression with common shocks. Econometrica 73, 15511585.CrossRefGoogle Scholar
Arellano, M. & Bonhomme, S. (2009) Robust priors in nonlinear panel data models. Econometrica 77, 489536.Google Scholar
Arellano, M. & Hahn, J. (2006) A Likelihood-Based Approximate Solution to the Incidental Parameter Problem in Dynamic Nonlinear Models with Multiple Effects. Working paper.Google Scholar
Bai, J. & Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica 70, 191221.CrossRefGoogle Scholar
Basel Committee on Banking Supervision (2001) The New Basel Capital Accord. Consultative Document of the Bank for International Settlements, April 2001, Part 2: Pillar 1, Section “Calculation of IRB Granularity Adjustment to Capital”.Google Scholar
Basel Committee on Banking Supervision (2003) The New Basel Capital Accord. Consultative Document of the Bank for International Settlements, April 2003, Part 3: The Second Pillar.Google Scholar
Belloni, A. & Chernozhukov, V. (2009) On the computational complexity of MCMC-based estimators in large sample. Annals of Statistics 37, 20112055.CrossRefGoogle Scholar
Bester, C. & Hansen, C. (2009) A penalty function approach to bias reduction in nonlinear panel models with fixed effects. Journal of Business and Economic Statistics 27, 131148.CrossRefGoogle Scholar
Bickel, P. & Yahav, J. (1969) Some contributions to the asymptotic theory of Bayes solutions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 11, 257276.CrossRefGoogle Scholar
Bosq, D. (1998) Nonparametric Statistics for Stochastic Processes. Springer.CrossRefGoogle Scholar
Brady, B. & Bos, R. (2004) Record Default in 2001: The Result of Poor Credit Quality and a Weak Economy. Technical report, Standard & Poor’s.Google Scholar
Campbell, J., Hilscher, J., & Szilagyi, J. (2008) Search for distress risk. Journal of Finance 63, 28992939.CrossRefGoogle Scholar
Cappé, O., Moulines, E., & Rydén, T. (2005) Inference in Hidden Markov Models. Springer Verlag.CrossRefGoogle Scholar
Chamberlain, G. (1987) Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics 34, 305334.CrossRefGoogle Scholar
Chava, S. & Jarrow, R. (2004) Bankruptcy prediction with industry effects. Review of Finance 8,537569.Google Scholar
Connor, G., Hagmann, M., & Linton, O. (2012) Efficient semiparametric estimation of the Fama–French model and extensions. Econometrica 80, 713754.Google Scholar
Cox, D. & Reid, N. (1987) Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society Series B 49, 139.Google Scholar
Davidson, J. (1994) Stochastic Limit Theory. Advanced Texts in Econometrics. Oxford University Press.CrossRefGoogle Scholar
de Finetti, B. (1931) Funzione Caratteristica di un Fenomeno Aleatorio. In Atti della Reale Accademia dei Lincei 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali, 4, 251299.Google Scholar
Dembo, A., Deuschel, T., & Duffie, D. (2004) Large portfolio losses. Finance and Stochastics 8, 316.CrossRefGoogle Scholar
Dempster, A., Laird, N., & Rubin, D. (1977) Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society Series B 39, 138.Google Scholar
Dhaene, G., Jochmans, K., & Thuysbaert, B. (2006) Jackknife Bias Reduction for Nonlinear Dynamic Panel Data Models with Fixed Effects. Working paper, Leuven University.Google Scholar
Dixit, A. (1990) Optimization in Economic Theory. Oxford University Press.CrossRefGoogle Scholar
Douc, R., Moulines, E., & Rydén, T. (2004) Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Annals of Statistics 32, 22542304.CrossRefGoogle Scholar
Duffie, D., Eckner, A., Horel, G., & Saita, L. (2009) Frailty correlated defaults. Journal of Finance 64, 20892123.CrossRefGoogle Scholar
Duffie, D. & Singleton, K. (1998) Simulating Correlated Defaults. Working paper, Stanford University.Google Scholar
Feng, D., Gouriéroux, C., & Jasiak, J. (2008) The ordered qualitative model for credit rating transitions. Journal of Empirical Finance 15, 111130.CrossRefGoogle Scholar
Fiorentini, G., Sentana, E., & Shephard, N. (2004) Likelihood-based estimation of latent generalized ARCH structures. Econometrica 72, 14811517.CrossRefGoogle Scholar
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000) The generalized dynamic factor model: Identification and estimation. Review of Economics and Statistics 82, 540554.CrossRefGoogle Scholar
Forni, M. & Reichlin, L. (1998) Let’s get real: A factor analytic approach to disaggregated business cycle dynamics. Review of Economic Studies 65, 453473.CrossRefGoogle Scholar
Gagliardini, P. & Gouriéroux, C. (2005a) Migration correlation: Definition and efficient estimation. Journal of Banking and Finance 29, 865894.CrossRefGoogle Scholar
Gagliardini, P. & Gouriéroux, C. (2005b) Stochastic migration models with application to corporate risk. Journal of Financial Econometrics 3, 188226.CrossRefGoogle Scholar
Gagliardini, P., Gouriéroux, C., & Monfort, A. (2012) Microinformation, nonlinear filtering and granularity. Journal of Financial Econometrics 10, 153.CrossRefGoogle Scholar
Ghosh, J. & Subramanyam, K. (1974) Second-order efficiency of maximum likelihood estimators. Sankya Series A 36, 325358.Google Scholar
Gordy, M. (2003) A risk-factor model foundation for rating-based bank capital rules. Journal of Financial Intermediation 12, 199232.CrossRefGoogle Scholar
Gordy, M. & Heitfield, E. (2002) Estimating Default Correlation from Short Panels of Credit Rating Performance Data. Working paper, Federal Reserve Board.Google Scholar
Gouriéroux, C. & Jasiak, J. (2012) Granularity adjustment for default risk factor model with cohorts. Journal of Banking and Finance 36, 14641477.CrossRefGoogle Scholar
Gouriéroux, C. & Monfort, A. (2008) Quadratic stochastic intensity and prospective mortality tables. Insurance Mathematics and Economics 43, 174184.CrossRefGoogle Scholar
Gouriéroux, C. & Monfort, A. (2009) Granularity in qualitative factor models. Journal of Credit Risk 5, 2961.CrossRefGoogle Scholar
Gouriéroux, C., Phillips, P., & Yu, J. (2010) Indirect inference for dynamic panel models. Journal of Econometrics 157, 6877.CrossRefGoogle Scholar
Granger, C. & Joyeux, R. (1980) An introduction to long memory time series models and fractional differencing. Journal of Time Series Analysis 1, 1529.CrossRefGoogle Scholar
Gupton, G., Finger, C., & Bhatia, M. (1997) Creditmetrics. Technical report, The Risk Metrics Group.Google Scholar
Hahn, J. & Kuersteiner, G. (2002) Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large. Econometrica 70, 16391657.CrossRefGoogle Scholar
Hahn, J. & Kuersteiner, G. (2011) Bias reduction for dynamic nonlinear panel models with fixed effects. Econometric Theory 27, 11521191.CrossRefGoogle Scholar
Hahn, J., Kuersteiner, G., & Cho, M. (2005) Asymptotic distribution of misspecified random effects estimators for a dynamic panel model with fixed effects when both n and T are large. Economic Letters 84, 117125.CrossRefGoogle Scholar
Hahn, J. & Moon, H. (2006) Reducing bias of MLE in dynamic panel models. Econometric Theory 22, 499512.CrossRefGoogle Scholar
Hahn, J. & Newey, W. (2004) Jackknife and analytical bias reduction for nonlinear panel models. Econometrica 72, 12951319.CrossRefGoogle Scholar
Hall, P. & Heyde, C. (1980) Martingale Limit Theory and Its Application. Academic Press.Google Scholar
Hewitt, E. & Savage, L. (1955) Symmetric measures on Cartesian products. Transaction of theAmerican Mathematical Society 80, 470501.CrossRefGoogle Scholar
Hjellvik, V. & Tjostheim, D. (1999) Modelling panels of intercorrelated autoregressive time series. Biometrika 86, 573590.CrossRefGoogle Scholar
Holly, A. & Phillips, P. (1979) A saddlepoint approximation of the distribution of the k-class estimator of a coefficient in a simultaneous system. Econometrica 47, 15271547.CrossRefGoogle Scholar
Huber, P., Scaillet, O., & Victoria-Feser, M.-P. (2009) Assessing multivariate predictors of financial market movements: A latent factor framework for ordinal data. Annals of Applied Statistics 3 ,249271.Google Scholar
Ibragimov, I. & Has’minskii, R. (1981) Statistical Estimation: Asymptotic Theory. Springer.CrossRefGoogle Scholar
Jennrich, R. (1969) Asymptotic properties of non-linear least squares estimators. Annals of Mathematical Statistics 40, 633643.CrossRefGoogle Scholar
Kingman, J. (1978) Uses of exchangeability. The Annals of Probability 6, 183197.CrossRefGoogle Scholar
Koopman, S., Lucas, A., & Monteiro, A. (2008) The multi-state latent factor intensity model for credit rating transitions. Journal of Econometrics 142, 399424.CrossRefGoogle Scholar
Lancaster, T. (2000) The incidental parameter problem since 1948. Journal of Econometrics 95,391413.CrossRefGoogle Scholar
Laplace, P. (1774) Mémoire sur la probabilité des causes par les événements. Mémoires de mathématique et de physique présentés à l’Academie Royale des Sciences par divers savants, dans ses assemblées 6, 621656.Google Scholar
Lee, R. & Carter, L. (1972) Modeling and forecasting US mortality. Journal of the American Statistical Association 87, 659675.Google Scholar
Loeffler, G. (2003) The effects of estimation error on measures of portfolio credit risk. Journal of Banking and Finance 27, 14271453.CrossRefGoogle Scholar
McNeil, A. & Wendin, J. (2007) Bayesian inference for generalized linear mixed models of portfolio credit risk. Journal of Empirical Finance 14, 131149.CrossRefGoogle Scholar
Merton, R. (1974) On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29, 449470.Google Scholar
Neyman, J. & Scott, E. (1948) Consistent estimates based on partially consistent observations. Econometrica 16, 131.CrossRefGoogle Scholar
Pfanzagl, J. & Wefelmeyer, W. (1978) A third-order optimum property of the maximum likelihood estimator. Journal of Multivariate Analysis 8, 129.CrossRefGoogle Scholar
Phillips, P. (1983) Marginal densities of instrumental variable estimators in the general single equation case. Advances in Econometrics 2, 124.Google Scholar
Robinson, P. (1988) The stochastic difference between econometric estimators. Econometrica 56, 531548.CrossRefGoogle Scholar
Schrager, D. (2006) Affine stochastic mortality. Insurance: Mathematics and Economics 38, 8797.Google Scholar
Severini, T. & Tripathi, G. (2001) A simplified approach to computing efficiency bounds in semiparametric models. Journal of Econometrics 102, 2366.CrossRefGoogle Scholar
Shumway, T. (2001) Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74, 101124.CrossRefGoogle Scholar
Stein, C. (1956) Efficient nonparametric testing and estimation. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 187195. University of California Press.Google Scholar
Stock, J. & Watson, M. (2002) Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 11671179.CrossRefGoogle Scholar
Sweeting, T. (1987) Discussion of Cox and Reid (1987). Journal of the Royal Statistical Society Series B 49, 2021.Google Scholar
Tierney, L. & Kadane, J. (1986) Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81, 8286.CrossRefGoogle Scholar
Vasicek, O. (1987) Probability of Loss on Loan Portfolio. KMV Technical report.Google Scholar
Vasicek, O. (1991) Limiting Loan Loss Probability Distribution. KMV Technical report.Google Scholar
Woutersen, T. (2002) Robustness Against Incidental Parameters. Working paper.Google Scholar
Supplementary material: PDF

Gagliardini Supplementary Material

Supplementary Material

Download Gagliardini Supplementary Material(PDF)
PDF 384.8 KB