An Overview and Simulation Study
Published online by Cambridge University Press: 11 February 2009
A limit theory for instrumental variables (IV) estimation that allows for possibly nonstationary processes was developed in Kitamura and Phillips (1992, Fully Modified IV, GIVE, and GMM Estimation with Possibly Non-stationary Regressors and Instruments, mimeo, Yale University). This theory covers a case that is important for practitioners, where the nonstationarity of the regressors may not be of full rank, and shows that the fully modified (FM) regression procedure of Phillips and Hansen (1990) is still applicable. FM. versions of the generalized method of moments (GMM) estimator and the generalized instrumental variables estimator (GIVE) were also developed, and these estimators (FM-GMM and FM-GIVE) were designed specifically to take advantage of potential stationarity in the regressors (or unknown linear combinations of them). These estimators were shown to deliver efficiency gains over FM-IV in the estimation of the stationary components of a model.
This paper provides an overview of the FM-IV, FM-GMM, and FM-GIVE procedures and investigates the small sample properties of these estimation procedures by simulations. We compare the following five estimation methods: ordinary least squares, crude (conventional) IV, FM-IV, FM-GMM, and FM-GIVE. Our findings are as follows, (i) In terms of overall performance in both stationary and nonstationary cases, FM-IV is more concentrated and better centered than OLS and crude IV, though it has a higher root mean square error than crude IV due to occasional outliers, (ii) Among FM-IV, FM-GMM, and FM-GIVE, (a) when applied to the stationary coefficients, FM-GIVE generally outperforms FM-IV and FM-GMM by a wide margin, whereas the difference between the latter two is quite small when the AR roots of the stationary processes are rather large; and (b) when applied to the nonstationary coefficients, the three estimators are numerically very close. The performance of the FM-GIVE estimator is generally very encouraging.