Hostname: page-component-784d4fb959-4tbfc Total loading time: 0 Render date: 2025-07-15T05:58:48.233Z Has data issue: false hasContentIssue false

INFERENCE IN MEDIAN AR MODELS WITH NONSTATIONARY AND HEAVY-TAILED HETEROSKEDASTIC NOISES

Published online by Cambridge University Press:  07 July 2025

Rui She*
Affiliation:
https://ror.org/04ewct822Southwestern University of Finance and Economics
*
Address correspondence to Rui She, Center of Statistical Research, School of Statistics, Southwestern University of Finance and Economics, China, e-mail: rshe@swufe.edu.cn.

Abstract

This article studies estimation and inference in the autoregressive (AR) models with unspecified and heavy-tailed heteroskedastic noises. A piece-wise locally stationary structure of the noise is constructed to capture various forms of heterogeneity, without imposing any restrictions on the tail index. The new nonstationary AR model allows for not only time-varying conditional features but also unconditional variance and tail index. This makes it appealing in practice, with wide applications in economics and finance. To obtain a feasible inference, we investigate the self-weighted least absolute deviation estimator and derive its asymptotic normality. Since the asymptotic variance relies on an unobserved density, a bootstrap method is proposed to approximate the limiting distribution. Based on the conditional moment condition, a portmanteau test from residuals is further proposed to detect misspecifications in the proposed model. A simulation study and two applications to time series illustrate our inference procedures.

Information

Type
ARTICLES
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

I would like to extend sincere thanks to the Editor, Prof. Peter C.B. Phillips, the Co-Editor, Prof. Yixiao Sun, and two anonymous referees for their critical comments and thoughtful suggestions. Special thanks go to Prof. Yixiao Sun for his invaluable assistance and support, which have significantly contributed to the improvement of this article. I also appreciate Prof. Shiqing Ling and Dr. Ke Zhu for their valuable discussion. This research was supported by the Natural Science Foundation of China (Grant No. 12201510).

References

REFERENCES

Aue, A., & Horváth, L. (2012). Structural breaks in time series. Journal of Time Series Analysis , 34, 116.10.1111/j.1467-9892.2012.00819.xCrossRefGoogle Scholar
Basrak, B., Davis, R. A., & Mikosch, T. (2002). Regular variation of GARCH processes. Stochastic Processes and Their Applications , 99, 95115.10.1016/S0304-4149(01)00156-9CrossRefGoogle Scholar
Berkes, I., Gombay, E., Horváth, L., & Kokoszka, P. (2004). Sequential change-point detection in GARCH(p,q) models. Econometric Theory , 20, 11401167.10.1017/S0266466604206041CrossRefGoogle Scholar
Bierens, H. J. (1982). Consistent model specification tests. Journal of Econometrics , 20, 105134.10.1016/0304-4076(82)90105-1CrossRefGoogle Scholar
Bierens, H. J. (1990). A consistent conditional moment test of functional form. Econometrica , 58, 14431458.10.2307/2938323CrossRefGoogle Scholar
Bierens, H. J., & Ploberger, W. (1997). Asymptotic theory of integrated conditional moment test. Econometrica , 65, 11291151.10.2307/2171881CrossRefGoogle Scholar
Bunzel, H., & Vogelsang, T. J. (2005). Powerful trend function tests that are robust to strong serial correlation with an application to the Prebish–Singer hypothesis. Journal of Business & Economic Statistics , 23, 381394.10.1198/073500104000000631CrossRefGoogle Scholar
Canjels, E., & Watson, M. W. (1997). Estimating deterministic trends in the presence of serially correlated errors. The Review of Economics and Statistics , 79, 184200.10.1162/003465397556773CrossRefGoogle Scholar
Chan, N. H., & Zhang, R. M. (2010). Inference for unit-root models with infinite variance GARCH errors. Statistica Sinica , 20, 13631393.Google Scholar
Chatterjee, S., & Bose, A. (2005). Generalized bootstrap for estimating equations. The Annals of Statistics , 33, 414436.10.1214/009053604000000904CrossRefGoogle Scholar
Dalla, V., Giraitis, L., & Robinson, P. M. (2020). Asymptotic theory for time series with changing mean and variance. Journal of Econometrics , 219, 281313.10.1016/j.jeconom.2020.03.005CrossRefGoogle Scholar
Davis, R. A., & Mikosch, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. The Annals of Statistics , 26, 20492080.10.1214/aos/1024691368CrossRefGoogle Scholar
de Haan, L., & Zhou, C. (2021). Trends in extremes value indices. Journal of the American Statistical Association , 535, 12651279.10.1080/01621459.2019.1705307CrossRefGoogle Scholar
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics , 7, 126.10.1214/aos/1176344552CrossRefGoogle Scholar
Einmahl, J., de Haan, L., & Zhou, C. (2016). Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society, Series B , 78, 3151.10.1111/rssb.12099CrossRefGoogle Scholar
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of variance of U.K. inflation. Econometrica , 50, 9871008.10.2307/1912773CrossRefGoogle Scholar
Engle, R.F. (1990). Discussion: Stock market volatility and the crash of 1987. The Review of Financial Studies , 3, 103106.10.1093/rfs/3.1.103CrossRefGoogle Scholar
Escanciano, J. C., & Velasco, C. (2010). Specification tests of parametric dynamic conditional quantiles. Journal of Econometrics , 159, 209221.10.1016/j.jeconom.2010.06.003CrossRefGoogle Scholar
Francq, C., & Zakoïan, J. (2004). Maximum likelihood estimation of pure GARCH and ARMA–GARCH processes. Bernoulli , 10, 605637.10.3150/bj/1093265632CrossRefGoogle Scholar
Francq, C., & Zakoïan, J. (2013). Estimating the marginal law of a time series with applications to heavy-tailed distributions. Journal of Business & Economic Statistics , 31, 412425.10.1080/07350015.2013.801776CrossRefGoogle Scholar
Franses, P. H., & Van Dijk, R. (1996). Forecasting stock market volatility using (non-linear) GARCH models. Journal of Forecasting , 15, 229235.10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-33.0.CO;2-3>CrossRefGoogle Scholar
Harvey, D. I., Leybourne, S. J., & Taylor, A. M. R. (2007). A simple, robust and powerful test of the trend hypothesis. Journal of Econometrics , 141, 13021330.10.1016/j.jeconom.2007.02.005CrossRefGoogle Scholar
Huang, H. T., Leng, X., Liu, X. H., & Peng, L. (2020). Unified inference for an AR process regardless of finite or infinite variance GARCH errors. Journal of Financial Econometrics , 18(2), 425470.Google Scholar
Koedijk, K. G., & Kool, C. J. M. (1992). Tail estimates of east European exchange rates. Journal of Business & Economic Statistics , 10, 8396.10.1080/07350015.1992.10509889CrossRefGoogle Scholar
Lange, T. (2011). Tail behavior and OLS estimation in AR-GARCH models. Statistica Sinica , 21, 11911200.10.5705/ss.2009.066CrossRefGoogle Scholar
Ling, S. (2005). Self-weighted least absolute deviation estimation for infinite variance autoregressive models. Journal of the Royal Statistical Society, Series B , 67, 381393.10.1111/j.1467-9868.2005.00507.xCrossRefGoogle Scholar
Ling, S. (2007). Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. Journal of Econometrics , 140, 849873.10.1016/j.jeconom.2006.07.016CrossRefGoogle Scholar
Ling, S., & Li, W. K. (1997). On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. Journal of the American Statistical Association , 92, 11841194.10.1080/01621459.1997.10474076CrossRefGoogle Scholar
Loretan, M., & Phillips, P. C. B. (1994). Testing covariance stationarity under moment condition failure with an application to common stock returns. Journal of Empirical Finance , 1, 211248.10.1016/0927-5398(94)90004-3CrossRefGoogle Scholar
Nakatsuma, T., & Tsurumi, H. (1999). Bayesian estimation of ARMA-GARCH model of weekly foreign exchange rates. Asia-Pacific Financial Markets , 6, 7184.10.1023/A:1010058509622CrossRefGoogle Scholar
Pan, J., Wang, H., & Yao, Q. (2007). Weighted least absolute deviations estimation for ARMA models with infinite variance. Econometric Theory , 23, 852879.10.1017/S0266466607070363CrossRefGoogle Scholar
Phillips, P. C. B., & Xu, K.-L. (2006). Inference in autoregression under heteroskedasticity. Journal of Time Series Analysis , 27, 289308.10.1111/j.1467-9892.2005.00466.xCrossRefGoogle Scholar
Pollard, D. (1990). Empirical processes: Theory and applications , CBMS Conference Series in Probability and Statistics, 2. Institute of Mathematical Statistics.10.1214/cbms/1462061091CrossRefGoogle Scholar
Quintos, C., Fan, Z., & Phillips, P. C. B. (2001). Structural change tests in tail behavior and the Asian crisis. The Review of Economic Studies , 68, 633663.10.1111/1467-937X.00184CrossRefGoogle Scholar
Rho, Y., & Shao, X. (2015). Inference for time series regression models with weakly dependent and heteroscedastic errors. Journal of Business & Economic Statistics , 33, 444457.10.1080/07350015.2014.962698CrossRefGoogle Scholar
Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics , 9, 130134.10.1214/aos/1176345338CrossRefGoogle Scholar
Rust, B. W. (2003). Separating signal from noise in global warming. Computing Science and Statistics , 35, 263277.Google Scholar
Shao, X. F., & Zhang, X. Y. (2010). Testing for change points in time series. Journal of the American Statistical Association , 105, 12281240.10.1198/jasa.2010.tm10103CrossRefGoogle Scholar
She, R. (2023). Tests of unit root hypothesis with heavy-tailed heteroscedastic noises. Statistica Sinica , 33, 122.Google Scholar
Shi, X. (1991). Some asymptotic results for jackknifing the sample quantile. The Annals of Statistics , 19, 496503.10.1214/aos/1176347996CrossRefGoogle Scholar
Taylor, S. (1986). Modelling financial time series . Wiley.Google Scholar
van der Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes . Springer Verlag.10.1007/978-1-4757-2545-2CrossRefGoogle Scholar
Weiss, A. A. (1986). Asymptotic theory for ARCH models: estimation and testing. Econometric Theory , 2, 107131.10.1017/S0266466600011397CrossRefGoogle Scholar
Wu, W. B., & Zhao, Z. (2007). Inference of trends in time series. Journal of the Royal Statistical Society, Series B , 69, 391410.10.1111/j.1467-9868.2007.00594.xCrossRefGoogle Scholar
Xu, K.-L. (2008). Bootstrapping autoregression under nonstationary volatility. Econometrics Journal , 11, 126.10.1111/j.1368-423X.2008.00235.xCrossRefGoogle Scholar
Xu, K.-L. (2012). Robustifying multivariate trend tests to nonstationary volatility. Journal of Econometrics , 169, 147154.10.1016/j.jeconom.2012.01.016CrossRefGoogle Scholar
Xu, K.-L., & Phillips, P. C. B. (2008). Adaptive estimation of autoregressive models with time-varying variances. Journal of Econometrics , 142, 265280.10.1016/j.jeconom.2007.06.001CrossRefGoogle Scholar
Yang, Y., & Ling, S. (2017). Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models. Journal of Econometrics , 197, 368381.10.1016/j.jeconom.2016.11.009CrossRefGoogle Scholar
Zhang, R. M., & Chan, N. H. (2021). Nonstationary linear processes with infinite variance GARCH errors. Econometric Theory , 37, 892925.10.1017/S0266466620000377CrossRefGoogle Scholar
Zhang, R. M., & Ling, S. (2015). Asymptotic inference for AR models with heavy-tailed G-GARCH noises. Econometric Theory , 31, 880890.10.1017/S0266466614000632CrossRefGoogle Scholar
Zhang, R. M., Sin, C. Y., & Ling, S. (2015). On functional limits of short- and long-memory linear processes with GARCH(1,1) noises. Stochastic Processes and Their Applications , 125, 482512.10.1016/j.spa.2014.09.016CrossRefGoogle Scholar
Zhang, X. F., Zhang, R. M., Li, Y., & Ling, S. (2022). LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise. Journal of Econometrics , 227, 228240.10.1016/j.jeconom.2020.06.011CrossRefGoogle Scholar
Zheng, Y., Zhu, Q., Li, G., & Xiao, Z. (2018). Hybrid quantile regression estimation for time series models with conditional heteroscedasticity. Journal of the Royal Statistical Society, Series B , 80, 975993.10.1111/rssb.12277CrossRefGoogle Scholar
Zhu, K., & Ling, S. (2011). Global self-weighted and local quasi-maximum exponential likelihood estimations for ARMA-GARCH/IGARCH models. The Annals of Statistics , 39, 21312163.10.1214/11-AOS895CrossRefGoogle Scholar
Zhu, K., & Ling, S. (2015). LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises. Journal of the American Statistical Association , 110, 784794.10.1080/01621459.2014.977386CrossRefGoogle Scholar
Zhu, K. (2019). Statistical inference for autoregressive models under heteroscedasticity of unknown form. The Annals of Statistics , 47, 31853215.10.1214/18-AOS1775CrossRefGoogle Scholar
Zhu, Q., Li, G., & Xiao, Z. (2021). Quantile estimation of regression models with GARCH-X errors. Statistica Sinica , 31, 12611284.Google Scholar
Zhu, Q., Zheng, Y., & Li, G. (2018). Linear double autoregression. Journal of Econometrics , 207, 162174.10.1016/j.jeconom.2018.05.006CrossRefGoogle Scholar
Supplementary material: File

She supplementary material

She supplementary material
Download She supplementary material(File)
File 342.3 KB