Hostname: page-component-6bf8c574d5-j5c6p Total loading time: 0 Render date: 2025-03-03T19:56:27.904Z Has data issue: false hasContentIssue false

IS COMPLETENESS NECESSARY? ESTIMATION IN NONIDENTIFIED LINEAR MODELS

Published online by Cambridge University Press:  27 February 2025

Andrii Babii*
Affiliation:
Economics Department, UNC Chapel Hill
Jean-Pierre Florens
Affiliation:
Toulouse School of Economics
*
Address correspondence to Andrii Babii, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, e-mail: babii.andrii@gmail.com.

Abstract

Modern data analysis depends increasingly on estimating models via flexible high-dimensional or nonparametric machine learning methods, where the identification of structural parameters is often challenging and untestable. In linear settings, this identification hinges on the completeness condition, which requires the nonsingularity of a high-dimensional matrix or operator and may fail for finite samples or even at the population level. Regularized estimators provide a solution by enabling consistent estimation of structural or average structural functions, sometimes even under identification failure. We show that the asymptotic distribution in these cases can be nonstandard. We develop a comprehensive theory of regularized estimators, which include methods such as high-dimensional ridge regularization, gradient descent, and principal component analysis (PCA). The results are illustrated for high-dimensional and nonparametric instrumental variable regressions and are supported through simulation experiments.

Type
ARTICLES
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We are grateful to the Editor, Co-Editor, and three anonymous referees for helpful comments. We are also grateful to the participants of the Duke workshop, TSE Econometrics seminar, Triangle Econometrics Conference, 4th ISNPS Conference, 2018 NASMES Conference, and Bristol Econometric Study Group. Jean-Pierre Florens acknowledges funding from the French National Research Agency (ANR) under the Investments for the Future program (Investissement d’Avenir, grant ANR-17-EURE-0010) and grant ANR-24-CE26-3681-01. All remaining errors are ours.

References

REFERENCES

Andrews, D. W. (2017). Examples of ${\ell}^2$ -complete and boundedly-complete distributions. Journal of Econometrics , 199(2), 213220.CrossRefGoogle Scholar
Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics . Princeton University Press.CrossRefGoogle Scholar
Babii, A. (2020). Honest confidence sets in nonparametric iv regression and other ill-posed models. Econometric Theory , 36(4), 658706.CrossRefGoogle Scholar
Babii, A. (2022). High-dimensional mixed-frequency iv regression. Journal of Business & Economic Statistics , 4(40), 14701483.CrossRefGoogle Scholar
Babii, A., & Florens, J.-P. (2024). Are unobservables separable? Econometric Theory , first published online Jan 26, 133.CrossRefGoogle Scholar
Babii, A., Carrasco, M., & Tsafack, I. (2024). Functional partial least-squares: optimal rates and adaptation. arXiv preprint arXiv:2402.11134.Google Scholar
Bakushinskii, A. B. (1967). A general method of constructing regularizing algorithms for a linear incorrect equation in hilbert space. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki , 7(3), 672677.Google Scholar
Blundell, R., Chen, X., & Kristensen, D. (2007). Semi-nonparametric iv estimation of shape-invariant engel curves. Econometrica , 75(6), 16131669.CrossRefGoogle Scholar
Bontemps, C., Florens, J.-P., & Meddahi, N. (2025). Functional ecological inference. Journal of Econometrics , 105918. https://doi.org/10.1016/j.jeconom.2024.105918.Google Scholar
Bosq, D. (2000). Linear processes in function spaces . Springer.CrossRefGoogle Scholar
Canay, I. A., Santos, A., & Shaikh, A. M. (2013). On the testability of identification in some nonparametric models with endogeneity. Econometrica , 81(6), 25352559.Google Scholar
Carrasco, M., Florens, J.-P., & Renault, E. (2007). Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization. Handbook of Econometrics , 6B, 56335751.CrossRefGoogle Scholar
Carrasco, M., Florens, J.-P., & Renault, E. (2014). Asymptotic normal inference in linear inverse problems. In J. S. Racine (ed.), Handbook of applied nonparametric and semiparametric econometrics and statistics (pp. 6596). Oxford University Press. https://10.1093/oxfordhb/9780199857944.013.003.Google Scholar
Centorrino, S. (2014). Data driven selection of the regularization parameter in additive nonparametric instrumental regressions. In Economics department . Stony Brook University.Google Scholar
Chen, X., & Christensen, T. M. (2018). Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric iv regression. Quantitative Economics , 9(1), 3984.CrossRefGoogle Scholar
Chen, X., & Pouzo, D. (2012). Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals. Econometrica , 80(1), 277321.Google Scholar
Chernozhukov, V., Newey, W. K., & Santos, A. (2023). Constrained conditional moment restriction models. Econometrica , 91(2), 709736.CrossRefGoogle Scholar
Compiani, G. (2022). Market counterfactuals and the specification of multiproduct demand: A nonparametric approach. Quantitative Economics , 13(2), 545591.CrossRefGoogle Scholar
Darolles, S., Fan, Y., Florens, J.-P., & Renault, E. (2011). Nonparametric instrumental regression. Econometrica , 79(5), 15411565.Google Scholar
D’Haultfoeuille, X. (2011). On the completeness condition in nonparametric instrumental problems. Econometric Theory , 27(3), 460471.CrossRefGoogle Scholar
Egger, H. (2005). Accelerated newton-landweber iterations for regularizing nonlinear inverse problems. RICAM-Report, 1.Google Scholar
Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems . Springer.CrossRefGoogle Scholar
Escanciano, J. C., & Li, W. (2021). Optimal linear instrumental variables approximations. Journal of Econometrics , 221(1), 223246.CrossRefGoogle Scholar
Florens, J.-P., & Van Bellegem, S. (2015). Instrumental variable estimation in functional linear models. Journal of Econometrics , 186(2), 465476.Google Scholar
Florens, J.-P., Johannes, J., & Van Bellegem, S. (2011). Identification and estimation by penalization in nonparametric instrumental regression. Econometric Theory , 27(3), 472496.CrossRefGoogle Scholar
Freyberger, J. (2017). On completeness and consistency in nonparametric instrumental variable models. Econometrica , 85(5), 16291644.CrossRefGoogle Scholar
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics , 29(5), 11891232.Google Scholar
Gagliardini, P., & Scaillet, O. (2012). Tikhonov regularization for nonparametric instrumental variable estimators. Journal of Econometrics , 167(1), 6175.CrossRefGoogle Scholar
Giné, E., & Nickl, R. (2016). Mathematical foundations of infinite-dimensional statistical models . Cambridge University Press.Google Scholar
Gregory, G. G. (1977). Large sample theory for u-statistics and tests of fit. Annals of Statistics , 5(1), 110123.CrossRefGoogle Scholar
Hall, P., & Horowitz, J. L. (2005). Nonparametric methods for inference in the presence of instrumental variables. Annals of Statistics , 33(6), 29042929.CrossRefGoogle Scholar
Hu, Y., & Shiu, J.-L. (2018). Nonparametric identification using instrumental variables: Sufficient conditions for completeness. Econometric Theory , 34(3), 659693.CrossRefGoogle Scholar
Koopmans, T. C. (1949). Identification problems in economic model construction. Econometrica , 17(2), 125144.CrossRefGoogle Scholar
Koopmans, T. C., & Reiersol, O. (1950). The identification of structural characteristics. Annals of Mathematical Statistics , 21(2):165181.CrossRefGoogle Scholar
Korolyuk, V. S., & Borovskich, Y. V. (1994). Theory of U-statistics . Springer Science & Business Media.CrossRefGoogle Scholar
Kress, R. (2014). Linear integral equations . Springer Science & Business Media.CrossRefGoogle Scholar
Luenberger, D. G. (1997). Optimization by vector space methods . John Wiley & Sons.Google Scholar
Mathé, P., & Pereverzev, S. V. (2002). Moduli of continuity for operator valued functions. Numerical Functional Analysis and Optimization , 23(5–6), 623631.Google Scholar
Nair, M. T. (2009). Linear operator equations: Approximation and regularization . World Scientific Publishing Company.CrossRefGoogle Scholar
Newey, W. K., & Powell, J. L. (2003). Instrumental variable estimation of nonparametric models. Econometrica , 71(5), 15651578.CrossRefGoogle Scholar
Rothenberg, T. J. (1971). Identification in parametric models. Econometrica , 39(3), 577591.CrossRefGoogle Scholar
Rudin, W. (1991). Functional analysis . McGraw-Hill.Google Scholar
Santos, A. (2011). Instrumental variable methods for recovering continuous linear functionals. Journal of Econometrics , 161(2), 129146.CrossRefGoogle Scholar
Santos, A. (2012). Inference in nonparametric instrumental variables with partial identification. Econometrica , 80(1), 213275.Google Scholar
Severini, T. A., & Tripathi, G. (2006). Some identification issues in nonparametric linear models with endogenous regressors. Econometric Theory , 22(2), 258278.Google Scholar
Severini, T. A., & Tripathi, G. (2012). Efficiency bounds for estimating linear functionals of nonparametric regression models with endogenous regressors. Journal of Econometrics , 170(2), 491498.CrossRefGoogle Scholar
Shorack, G. R., & Wellner, J. A. (1986). Empirical processes with applications to statistics . John Wiley & Sons.Google Scholar
Tikhonov, A. N. (1963). On the solution of ill-posed problems and the method of regularization. Doklady Akademii Nauk , 151(3), 501504.Google Scholar
Tsybakov, A., Bickel, P., & Ritov, Y. (2009). Simultaneous analysis of lasso and dantzig selector. Annals of Statistics , 37(4), 17051732.Google Scholar
van der Vaart, A. W., & Wellner, J. A. (2000). Weak convergence and empirical processes . Springer.Google Scholar
Yao, F., Müller, H.-G., & Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association , 100(470), 577590.Google Scholar
Supplementary material: File

Babii and Florens supplementary material

Babii and Florens supplementary material
Download Babii and Florens supplementary material(File)
File 228.5 KB