Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T09:48:58.080Z Has data issue: false hasContentIssue false

A NONPARAMETRIC REGRESSION ESTIMATOR THAT ADAPTS TO ERROR DISTRIBUTION OF UNKNOWN FORM

Published online by Cambridge University Press:  05 April 2007

Oliver Linton
Affiliation:
London School of Economics
Zhijie Xiao
Affiliation:
Boston College

Abstract

We propose a new kernel estimator for nonparametric regression with unknown error distribution. We show that the proposed estimator is adaptive in the sense that it is asymptotically equivalent to the infeasible local likelihood estimator (Staniswalis, 1989, Journal of the American Statistical Association 84, 276–283; Fan, Farmen, and Gijbels, 1998, Journal of the Royal Statistical Society, Series B 60, 591–608; and Fan and Chen, 1999, Journal of the Royal Statistical Society, Series B 61, 927–943), which requires knowledge of the error distribution. Hence, our estimator improves on standard nonparametric kernel estimators when the error distribution is not normal. A Monte Carlo experiment is conducted to investigate the finite-sample performance of our procedure.We thank Yuichi Kitamura, Yanqin Fan, Joel Horowitz, Roger Koenker, Jens Perch Nielsen, Peter Phillips, Peter Robinson, Tom Rothenberg, and two referees for helpful comments. Financial support from the NSF and the ESRC (UK) is gratefully acknowledged.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aerts, M. & G. Claeskens (1997) Local polynomial estimation in multiparameter likelihood models. Journal of the American Statistical Association 92, 15361545.Google Scholar
Ahn, H. (1995) Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty. Journal of Econometrics 67, 337378.Google Scholar
Ai, C. (1997) A semiparametric maximum likelihood estimator. Econometrica 65, 933963.Google Scholar
Akahira, M. & K. Takeuchi (1995) Non-regular statistical estimation. New York: Springer.
Akritas, M. & I. Van Keilegom (2001) Nonparametric estimation of the residual distribution. Scandinavian Journal of Statistics 28, 549568.Google Scholar
Andrews, D.W.K. (1995) Nonparametric kernel estimation for semiparametric models. Econometric Theory 11, 560596.Google Scholar
Beran, R. (1974) Asymptotically efficient adaptive rank estimates in location models. Annals of Statistics 2, 248266.Google Scholar
Bickel, P.J. (1975) One-step Huber estimates in the linear model. Journal of the American Statistical Association 70, 428434.Google Scholar
Bickel, P.J. (1982) On adaptive estimation. Annals of Statistics 10, 647671.Google Scholar
Bickel, P.J., C.A.J. Klaassen, Y. Ritov, & J.A. Wellner (1993) Efficient and Adaptive Estimation for Semiparametric Models. Springer-Verlag.
Carroll, R., D. Ruppert, & A. Welsh (1998) Local estimating equations. Journal of the American Statistical Association 93, 214227.Google Scholar
Casella, G. & E. Lehman (1998) Theory of Point Estimation, 2nd ed. Springer-Verlag.
Chaudhuri, P. (1991) Nonparametric estimates of regression quantiles and their local Bahadur representation. Annals of Statistics 19, 760777.Google Scholar
Copas, J.B. (1994) Local likelihood based on kernel censoring. Journal of the Royal Statistical Society, Series B 57, 221235.Google Scholar
Drost, F. & C.A.J. Klaassen (1997) Efficient estimation in semiparametric GARCH models. Journal of Econometrics 81, 193221.Google Scholar
Fan, J. (1992) Design-adaptive nonparametric regression. Journal of the American Statistical Association 87, 9981004.Google Scholar
Fan, J. (1993) Local linear regression smoothers and their minimax efficiencies. Annals of Statistics 21, 196216.Google Scholar
Fan, J. & J. Chen (1999) One-step local quasi-likelihood estimation. Journal of the Royal Statistical Society, Series B 61, 927943.Google Scholar
Fan, J., M. Farmen, & I. Gijbels (1998) Local maximum likelihood estimation and inference. Journal of the Royal Statistical Society, Series B 60, 591608.Google Scholar
Fan, J. & I. Gijbels (1996) Local Polynomial Modelling and Its Applications. Chapman and Hall.
Fan, J., W. Härdle, & E. Mammen (1998) Direct estimation of low-dimensional components in additive models. Annals of Statistics 26, 943971.Google Scholar
Fan, J., N. Heckman, & M. Wand (1995) Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. Journal of the American Statistical Association 90, 141150.Google Scholar
Gozalo, P. & O. Linton (2000) Local nonlinear least squares: Using parametric information in nonparametric regression. Journal of Econometrics 99, 63106.Google Scholar
Härdle, W. & O.B. Linton (1994) Applied nonparametric methods. In D. McFadden & R. Engle (eds.), The Handbook of Econometrics, vol. 4, pp. 22952339. North-Holland.
Hastie, T. & R. Tibshirani (1987) Local likelihood estimation. Journal of the American Statistical Association 82, 559567.Google Scholar
Hengartner, N.W., M.H. Wegkamp, & E. Matzner-Lober (2002) Bandwidth selection for local linear regression smoothers. Journal of the Royal Statistical Society, Series B 64, 791804.Google Scholar
Hjort, N.L. (1993) Dynamic likelihood hazard rate estimation. Statistical Research Report, Preprint 4, Department of Mathematics, University of Oslo.
Hjort, N.L. & M.C. Jones (1996) Locally parametric nonparametric density estimation. Annals of Statistics 24, 16191647.Google Scholar
Hodgson, D. (1998a) Adaptive estimation of cointegrating regressions with ARMA errors. Journal of Econometrics 85, 231268.Google Scholar
Hodgson, D. (1998b) Adaptive estimation of error correction models. Econometric Theory 14, 4469.Google Scholar
Hodgson, D. (2000) Unconditional pseudo-maximum likelihood and adaptive estimation in the presence of conditional heterogeneity of unknown form. Econometric Theory 19, 175206.Google Scholar
Hunsberger, F. (1994) Semiparametric estimation in likelihood based models. Journal of the American Statistical Association 89, 13541365.Google Scholar
Jeganathan, P. (1995) Some aspects of asymptotic theory with applications to time series models. Econometric Theory 11, 818887.Google Scholar
Kreiss, J. (1987) On adaptive estimation in stationary ARMA process. Annals of Statistics 15, 112133.Google Scholar
Lewbel, A. & O. Linton (forthcoming) Nonparametric matching and efficient estimators of homothetically separable functions. Econometrica.
Linton, O.B. (1993) Adaptive estimation in ARCH models. Econometric Theory 9, 539569.Google Scholar
Linton, O.B. (1997) Efficient estimation of additive nonparametric regression models. Biometrika 84, 469474.Google Scholar
Linton, O. & E. Mammen (2005) Estimating semiparametric ARCH models by kernel smoothing methods. Econometrica 73, 771836.Google Scholar
Linton, O.B. & Z. Xiao (2001) Adaptive Nonparametric Regression. Working paper, University of Illinois.
Loader, C.R. (1996) Local likelihood density estimation. Annals of Statistics 24, 16021618.Google Scholar
Manski, C.F. (1984) Adaptive estimation of nonlinear regression models. Econometric Reviews 3, 187208.Google Scholar
Masry, E. (1996a) Multivariate local polynomial regression for time series: Uniform strong consistency and rates. Journal of Time Series Analysis 17, 571599.Google Scholar
Masry, E. (1996b) Multivariate regression estimation local polynomial fitting for time series. Stochastic Processes and Their Applications 65, 81101.Google Scholar
Robinson, P.M. (1988) The stochastic difference between econometric statistics. Econometrica 56, 931954.Google Scholar
Robinson, P.M. (1989) Time varying nonlinear regression. In P. Hackl & A. Westland (eds.), Statistical Analysis and Forecasting of Economic Structural Change, pp. 253264. Springer-Verlag.
Staniswalis, J.G. (1989) The kernel estimate of a regression function in likelihood based models. Journal of the American Statistical Association 84, 276283.Google Scholar
Steigerwald, D. (1992) Adaptive estimation in time series regression models. Journal of Econometrics 54, 251276.Google Scholar
Stein, C. (1956) Efficient nonparametric testing and estimation. In J. Neyman (ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp. 187196. University of California Press.
Stone, C. (1975) Adaptive maximum likelihood estimation of a location parameter. Annals of Statistics 3, 267284.Google Scholar
Tibshirani, R. (1984) Local likelihood estimation. Ph.D. dissertation, Stanford University.
Xiao, Zhijie, O. Linton, R. Carroll, & E. Mammen (2003) More efficient kernel estimation in nonparametric regression with autocorrelated errors. Journal of the American Statistical Association 98, 980992.Google Scholar
Zhang, J. & A. Liu (2003) Local polynomial fitting based on empirical likelihood. Bernoulli 9, 579605.Google Scholar